LIU Yuansong,GUAN Mingjie*,ZHANG Zhiwei,et al.Effect of lignin modified urea-formaldehyde resin on the formaldehyde emission and bonding performance of bamboo laminated timber[J].Journal of Forestry Engineering,2017,2(03):28-32.[doi:10.13360/j.issn.2096-1359.2017.03.005]





Effect of lignin modified urea-formaldehyde resin on the formaldehyde emission and bonding performance of bamboo laminated timber
2.国家林业局竹材工程技术研究中心,南京 210037
LIU Yuansong1 GUAN Mingjie2* ZHANG Zhiwei1 ZHOU Wenyi1
1. College of Materials Science and Engineering, Nanjing Forestry University;
2. Bamboo Engineering and Technology Research Center of SFA, Nanjing 210037, China
木质素 脲醛树脂胶 竹层积材 甲醛释放量 胶合性能
lignin urea-formaldehyde resin bamboo laminated timber formaldehyde emission bonding performance
S781.9; TQ323.1
针对竹层积材中甲醛释放量过高的问题,以碳化竹片为原料,利用木质素作为脲醛树脂胶黏剂的甲醛捕捉改性剂,对脲醛树脂胶黏剂进行共混改性后压制双层竹层积材。采用木质素添加量和组坯方式的双因素分析法,探讨木质素改性脲醛树脂胶黏剂对竹层积材甲醛释放量及胶合性能的影响; 采用环境扫描电子显微镜(ESEM)对木质素改性后的竹层积材胶合界面进行微观形貌分析。木质素的加入使竹层积材的甲醛释放量明显降低,各组坯方式下竹层积材的甲醛释放量差异较小,均可达到GB 18580—2001标准规定的E2级; 随着木质素添加量的增加,竹层积材的剪切强度逐渐增大,竹黄面与竹黄面无节组坯试件(II)、竹黄面与竹青面无节组坯试件(IO)及竹黄面与竹黄面有节组坯试件(Node)的剪切强度均在木质素添加量为40%时达到最大,分别为7.6,8.0和8.5 MPa,相比空白组分别提高了85%,70%和41%; 对于竹黄面与竹黄面组坯试件,带节试件的胶层剪切强度大于无节组; 由ESEM可知,碳化竹材胶合界面被压缩甚至压溃,表面细胞不同程度呈扁平碎片状,胶黏剂主要渗透到竹材的表层破坏细胞,多数为薄壁细胞,位于竹材表层的维管束中偶尔也会有胶黏剂存在,极少量胶黏剂可能通过裂隙进入竹材更深部位的细胞。结果表明:在相同木质素添加量条件下,组坯方式对竹层积材甲醛释放量几乎没有影响; 黄-黄无节组坯试件、黄-青无节组坯试件及黄-黄有节组坯试件胶层剪切强度随着木质素添加量的增加逐渐增大,黄-青组坯试件的胶层剪切强度普遍优于黄-黄组坯试件,黄-黄有节组坯试件胶层剪切强度均大于无节试件; ESEM分析表明,由于碳化竹片表面易被压缩压溃,木质素含量较大的高黏度胶黏剂缺乏有效渗透,致使胶黏剂集聚在压溃细胞表面,竹片胶合界面有效胶层厚度增大,从而导致胶层剪切强度增加。
In order to reduce formaldehyde emission in bamboo laminated timber, the lignin was used as a formaldehyde catching agent to modify urea-formaldehyde(UF)resin, and two-ply bamboo laminated timber was fabricated by using the modified UF-lignin resin with carbonized bamboo strips. The lignin contents and assemble patterns of bamboo strip were analyzed by two-factor analysis method, aiming to investigate the impact of the modified UF-lignin on formaldehyde emission and bonding properties of the bamboo laminated timber. To examine the penetration of the modified UF-lignin resin in the interface, the microscopy of bonding line of the bamboo laminated timber was characterized by the environmental scanning electron microscope(ESEM). The formaldehyde emission of the bamboo laminated timber reduced obviously with the addition of lignin, while different assemble patterns had slight influence on formaldehyde emission. However, all of them reached the E2 level according to GB 18580-2001. The shear strength of bamboo laminated timber increased with the increase in lignin content. The shear strength of the inner-inner pattern(II)specimen, the inner-outer(IO)specimen and the inner-inner pattern with node(Node)specimen reached the maximum of 7.6, 8.0 and 8.5 MPa, respectively, when the lignin content was 40%, which increased by 85%, 70% and 41%, respectively, compared with those of control groups. The shear strength of inner-inner pattern specimens with nodes was greater than those of the specimens without nodes. ESEM results showed that the bonding interface of carbonized bamboo was compressed or even crushed, the surface cells showed flat pieces in some degrees, and the adhesive was penetrated into damaged cells. It was also observed that there were mainly parenchyma cells on the bamboo surfaces, and the adhesive was occasionally found in the vascular bundle located on the bamboo surfaces, while a little fraction of adhesive may penetrate into the cell in deeper part of bamboo through the slit. The results revealed that the assembly pattern had slight impact on bamboo laminated timber under the same lignin content. With the increase in lignin content, the shear strength of the inner-inner pattern specimen, the inner-outer specimen and the inner-inner pattern with node specimen increased. The shear strength of the inner-outer specimen was generally greater than that of the inner-inner pattern specimen, and the shear strength of inner-inner pattern with node specimen was greater than that of the specimen without node. The ESEM results showed that the carbonized bamboo surface was easy to crush, and the adhesive with high lignin content and high viscosity lacked effective permeability. As a result, the adhesive was concentrated in the crushing cell, the thickening bond line was formed on the bamboo surfaces, and the bonding properties were improved.


[1] 于海霞, 方崇荣, 郑洪连, 等. 胶合板甲醛释放限量规定及检测方法比较[J]. 南京林业大学学报(自然科学版), 2015, 39(6):163-168. YU H X, FANG C R, ZHENG H L, et al. Comparison of the limitation and testing method of formaldehyde emission of plywood according to domestic standards with oversea ones[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(6):163-168.
[2] 王翔, 蒋帅南, 陈敏智, 等. 木质素基碳纤维研究进展[J]. 林业工程学报, 2016, 1(1):83-87. WANG X, JIANG S N, CHEN M Z, et al. Review of research progress on lignin-based carbon fibers[J]. Journal of Forestry Engineering, 2016, 1(1):83-87.
[3] 袁媛, 郭明辉. 复配改性工业木质素/木纤维复合材料的制备与表征[J]. 复合材料学报, 2014, 31(4):1098-1105. YUAN Y, GUO M H. Preparation and characterization of hybrid modified industrial lignin/wood fiber composites[J]. Acta Materiae Compositae Sinica, 2014, 31(4):1098-1105.
[4] LIU X H, XU Y Z, YU J, et al. Integration of lignin and acrylic monomers towards grafted copolymers by free radical polymerization[J]. International Journal of Biological Macromolecules, 2014, 67:483-489.
[5] 王春鹏, 赵临五. 木材工业用胶粘剂的现状及发展趋势[J]. 林产工业, 2001, 28(2):9-12. WANG C P, ZHAO L W. The situation and development of wood adhesvies[J]. China Forest Products Industry, 2001, 28(2):9-12.
[6] 穆有炳, 施娟娟, 王春鹏, 等. 木质素在木材胶黏剂中的应用[J]. 生物质化学工程, 2009, 43(3):42-46. MU Y B, SHI J J, WANG C P, et al. Application of lignin in wood adhesives[J]. Biomass Chemical Engineering, 2009, 43(3):42-46.
[7] ZHANG W, MA Y F, XU Y Z, et al. Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive[J]. International Journal of Adhesion and Adhesives, 2013, 40:11-18.
[8] CHEN R, WU Q X. Modified lignosulfonate as adhesive[J]. Journal of Applied Polymer Science, 1994, 52(3):437-443.
[9] FELBY C, HASSINGBOE J, LUND M. Pilot-scale production of fiberboards made by laccase oxidized wood fibers:board properties and evidence for cross-linking of lignin[J]. Enzyme and Microbial Technology, 2002, 31(6):736-741.
[10] MATSUSHITA Y, WADA S, FUKUSHIMA K, et al. Surface characteristics of phenol-formaldehyde-lignin resin determined by contact angle measurement and inverse gas chromatography[J]. Industrial Crops and Products, 2006, 23(2):115-121.
[11] 曹阳, 曾祥钦. 木素改性脲醛胶粘剂的研制[J]. 贵州化工, 2002, 27(1):17-18. CAO Y, ZENG X Q. A study on a lignin modified UF adhesive[J]. Guizhou Chemical industry, 2002, 27(1):17-18.
[12] 张艳芳, 曾祥钦. 磺化木质素改性脲醛树脂的研制[J]. 贵州工业大学学报(自然科学版), 2004, 33(1):82-84. ZHANG Y F, ZENG X Q. Study on LS modified UF adhesive[J]. Journal of Guizhou University of Technology(Natural Science Edition), 2004, 33(1):82-84.
[13] 张立芳, 庞健, 周爱萍. 木质素酸钠降低刨花板甲醛散发量研究[J]. 南京林业大学学报(自然科学版), 1996, 20(4):84-86. ZHANG L F, PANG J, ZHOU A P. A study on formaldehyde emission of particleboard applied sodium lignate[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 1996, 20(4):84-86.
[14] 彭冠云, 王玉荣, 任海青, 等. 基于同步辐射X射线相衬显微CT技术的竹木复合材料胶合界面特征研究[J]. 光谱学与光谱分析, 2013, 33(3):829-833. PENG G Y, WANG Y R, REN H Q, et al. Investigation of characteristic microstructures of adhesive interface in wood/bamboo composite material by synchrotron radiation X-ray phase contrast microscopy[J]. Spectroscopy and Spectral Analysis, 2013, 33(3):829-833.
[15] 邵卓平, 黄盛霞, 吴福社, 等. 毛竹节间材与节部材的构造与强度差异研究[J]. 竹子研究汇刊, 2008, 27(2):48-52. SHAO Z P, HUANG S X, WU F S, et al. A study on the difference of structure and strength between internodes and nodes of Moso bamboo[J]. Journal of Bamboo Research, 2008, 27(2):48-52.
[16] GUAN M J, HUANG Z W, ZENG D. Shear strength and microscopic characterization of a bamboo bonding interface with phenol formaldehyde resins modified with Larch Thanaka and urea[J]. BioResources, 2016, 11(1):492-502.


 XU Xu-dong,HONG Shu,AN Ran,et al.Structural features of lignin modified by palladium chloride catalyst in eutectic ionic liquids[J].Journal of Forestry Engineering,2015,29(03):116.[doi:10.13360/j.issn.1000-8101.2015.06.029]
 WANG Xiang,JIANG Shuainan,CHEN Minzhi,et al.Review of research progress on lignin-based carbon fibers[J].Journal of Forestry Engineering,2016,1(03):83.[doi:10.13360/j.issn.2096-1359.2016.01.016]
 LI Wei,TONG Guobin,WANG Mengru,et al.Preparation of the alkaline lignin pyrolytic based carbon quantum dots/TiO2 composite photocatalyst[J].Journal of Forestry Engineering,2016,1(03):84.[doi:10.13360/j.issn.2096-1359.2016.05.015]
 WANG Fei,WU Zhen,ZHANG Jun,et al.Advances in production of hydrocarbon compounds from lignin[J].Journal of Forestry Engineering,2017,2(03):1.[doi:10.13360/j.issn.2096-1359.2017.03.001]
 ZHANG Xueming,WU Miao,XU Feng*.Recent development on conversion of lignin into aromatics based on catalytical depolymerization[J].Journal of Forestry Engineering,2017,2(03):1.[doi:10.13360/j.issn.2096-1359.2017.04.001]
 WEN Jialong,CHEN Tianying,SUN Runcang*.Research progress on separation and structural analysis of lignin in lignocellulosic biomass[J].Journal of Forestry Engineering,2017,2(03):76.[doi:10.13360/j.issn.2096-1359.2017.05.014]
 YING Wenjun,WU Kai,ZHAO Cunyi,et al.Effect of surface property of polyoxyethylene ether grafted alkali lignin on saccharification of Avicel[J].Journal of Forestry Engineering,2018,3(03):68.[doi:10.13360/j.issn.2096-1359.2018.04.012]
 HUANG Caoxing,HE Juan,LIANG Chen,et al.Progress in applications of high value-added lignin materials[J].Journal of Forestry Engineering,2019,4(03):17.[doi:10.13360/j.issn.2096-1359.2019.01.003]
 CHENG Cheng,TAO Guixiang,WANG Qi,et al.Experimental study on performance of lignin-modified asphalt at high temperatures[J].Journal of Forestry Engineering,2019,4(03):141.[doi:10.13360/j.issn.2096-1359.2019.01.021]
 ZHOU Fanglang,YANG Jing,YANG Haiyan,et al.The in situ regulation of structural properties of lignin-based carbon foam by KOH[J].Journal of Forestry Engineering,2019,4(03):99.[doi:10.13360/j.issn.2096-1359.2019.02.016]


基金项目:江苏省自然科学基金(BK2011822); 江苏高校优势学科建设工程资助项目(PAPD)。
更新日期/Last Update: 2017-05-15