XIA Zihua,ZHAO Luyang,WU Weibing*,et al.Performance of photocatalytic biomass fuel cells based on heteropolyacids[J].Journal of Forestry Engineering,2017,2(06):86-91.[doi:10.13360/j.issn.2096-1359.2017.06.015]





Performance of photocatalytic biomass fuel cells based on heteropolyacids
1.江苏省制浆造纸科学与技术重点实验室,南京林业大学轻工与食品学院,南京 210037;
2.中国林业科学研究院林产化学工业研究所,南京 210042
XIA Zihua1 ZHAO Luyang1 WU Weibing1* JING Yi1 DAI Hongqi1 FANG Guigan2
1.Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, College of Light Industry Science and Engineering,Nanjing Forestry University, Nanjing 210037, China;
2.Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry,
燃料电池 光催化 杂多酸 葡萄糖 生物质
fuel cell photocatalysis heteropolyacid glucose biomass
直接将生物质能转化为电能的技术可减少对环境的影响并提高能量转换效率。笔者构建了阴阳两极均为液体杂多酸的光催化剂生物质燃料电池,其中杂多酸既是光催化剂也是储存电子的载体。以葡萄糖为燃料,研究了该电池在不同的燃料浓度、温度和流速条件下的电池性能并对其工作原理进行了分析。研究结果表明:阳极磷钼酸的还原度是决定电池功率的关键因素,随着光照时间的延长磷钼酸的还原度呈线性增加。相同电池运行条件下,随着电池燃料浓度的增加和光催化反应时间的延长,还原度增加,电池输出功率增大; 随着温度及电池液循环流速的增加,电池的输出功率也增加。经“光照充电”后,该电池可在无光照条件下持续工作放电,试验中的电池输出功率为10 mW/cm2以上,最大值达 31.5 mW/cm2。该燃料电池可直接、高效利用生物质能,在新能源领域有较为重要的应用价值。
The technology of directly converting biomass energy into electrical energy is environmental-friendly and can improve the efficiency of energy conversion.A photocatalytic fuel cell with liquid-heteropolyacid as the anode and cathode, glucose as fuel was prepared in this study, in which heteropolyacid was used as both a photocatalyst and charge carrier.The performance and the working principle of the fuel cell under different fuel concentrations, temperatures and flow rates were investigated.Results showed that the reduction degree of anode was the key factor that determined the performance of the prepared fuel cell.There was a linear increase in the reduction degree of heteropolyacid along with the time of irradiation delaying.The output power of the fuel cell increased with the increase of the fuel concentration, photocatalytic reaction time, operation temperature and the flow rate of cell liquid.The fuel cell could generate electricity continuously without light irradiation after the photocatalytic reaction for a period of time.The power densities of the designed fuel cells were higher than 10 mW/cm2, and the maximum density was up to 31.5 mW/cm2.The fuel cell, which can directly and efficiently utilize biomass energy, have important application value in the new energy field.


[1] XUAN J, LEUNG M, LEUNG D, et al.A review of biomass-derived fuel processors for fuel cell systems[J].Renewable & Sustainable Energy Reviews, 2009, 13(6):1301-1313.
[2] 杜伟娜.可再生的碳源:生物质能[M].北京:北京工业大学出版社, 2015. DU W N.Renewable carbon sources:biomass energy[M].Beijing:Beijing University of Technology Press, 2015.
[3] 王浩, 韩秋喜, 贺悦科, 等.生物质能源及发电技术研究[J].环境工程, 2012(S2):461-464. WANG H, HAN Q X, HE Y K, et al.Bomass energy and its power generation technology[J].Environmental Engineering, 2012(S2):461-464.
[4] BIANCHINI C, SHEN P K.Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J].Chemical Reviews, 2009, 109(9):4183-4206.
[5] LAMY C, BELGSIR E M, LÉGER J M.Electrocatalytic oxidation of aliphatic alcohols:application to the directalcohol fuel cell(DAFC)[J].Journal of Applied Electrochemistry, 2001, 31(7):799-809.
[6] BARCZUK P J, LEWERA A, MIECZNIKOWSKI K A, et al.Visible light-driven photoelectrochemical conversion of the by-products of the ethanol fuel cell into hydrogen[J].Electrochemical and Solid State Letters, 2009, 12(12):B165-B166.
[7] BROUZGOU A, PODIAS A, TSIAKARAS P.PEMFCs and AEMFCs directly fed with ethanol:a current status comparative review[J].Journal of Applied Electrochemistry, 2013, 43(2):119-136.
[8] NAKAGAWA N, KANEDA Y, WAGATSUMA M.Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C[J].Journal of Power Sources, 2012, 199(1):103-109.
[9] LIU Y B, LI J H, ZHOU B X, et al.A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation[J].Chemical Communications, 2011, 47(37):10314-10316.
[10] GAN Y X, GAN B J, CLARK E, et al.Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell[J].Materials Research Bulletin, 2012, 47(9):2380-2388.
[11] 赵展, 齐秀龙, 刘晓东, 等.生物质气化-燃料电池发电系统性能分析[J].可再生能源, 2011, 29(6):115-120, 124. ZHAO Z, QI X L, LIU X D, et al.Performance analysis of biomass gasification and solid oxide fuel cell system[J].Renewable Energy, 2011, 29(6):115-120, 124.
[12] MAHATO N, BANERJEE A, GUPTA A, et al.ChemInform abstract:progress in material selection for solid oxide fuel cell technology:a review[J].Progress in Materials Science, 2015, 72(51):141-337.
[13] RABAEY K, VERSTRAETE W.Microbial fuel cells:novel biotechnology for energy generation[J].Trends in Biotechnology, 2005, 23(6):291-298.
[14] 刘宏芳, 郑碧娟.微生物燃料电池[J].化学进展, 2009, 21(6):1349-1355. LIU H F, ZHENG B J.Microbial fuel cells[J].Progress in Chemistry, 2009, 21(6):1349-1355.
[15] CHOUDHURY A, CHANDRA H, ARORA A.Application of solid oxide fuel cell technology for power generation—A review[J].Renewable & Sustainable Energy Reviews, 2013, 20(4):430-442.
[16] YANG L, WANG S, BLINN K, et al.Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-XYbxO3-δ[J].Science, 2009, 326(5949):126-129.
[17] HE F, SONG D, PENG R, et al.Electrode performance and analysis of reversible solid oxidefuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3-δ[J].Journal of Power Sources, 2010, 195(11):3359-3364.
[18] AHMAD F A M, STEPHANOPOULOS G N.A review of cellulosic microbial fuel cells:performance and challenges[J].Biomass & Bioenergy, 2013, 56(56):179-188.
[19] LIU W, MU W, LIU M J, et al.Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier[J].Nature Communications, 2014, 5(2):3208.
[20] LIU W, MU W, DENG Y L.High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J].Angewandte Chemie-International Edition, 2014, 53(49):13558-13562.
[21] LIU W, CUI Y, DU X, et al.High efficiency hydrogen evolution from native biomass electrolysis[J].Energy & Environmental Science, 2016, 9(2):467-472.
[22] ODYAKOV V F, ZHIZHINA E G, MAKSIMOVSKAYA R I.Synthesis of molybdovanadophosphoric heteropoly acid solutions having modified composition[J].Applied Catalysis A—General, 2008, 342(1/2):126-130.
[23] PAPACONSTANTINOU E, IOANNIDIS A, HISKIA A, et al.Photocatalytic processes by polyoxometalates.Splitting of water.The role of dioxygen[J].Molecular Engineering, 1993, 3(1):231-239.
[24] MIZUNO N, MISONO M.Heterogeneous catalysis[J].Chemical Reviews, 1998, 98(1):199-218.
[25] WU W B, LIU W, MU W, et al.Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study[J].Journal of Power Sources, 2016, 318:86-92.


 LI Zhao,LIU Yu*,ZHU Xiaodong.Release control of formaldehyde emission from veneered panels modified with nanoparticles[J].Journal of Forestry Engineering,2017,2(06):21.[doi:10.13360/j.issn.2096-1359.2017.06.004]
 XUAN Luning,LIU Zhigao,FU Yunlin*.Construction of Fe3+ doped TiO2/SiO2 composite film on wood surface and its photocatalytic activity[J].Journal of Forestry Engineering,2018,3(06):35.[doi:10.13360/j.issn.2096-1359.2018.04.006]
 LU Lichen,DONG Mengqi,YANG Tao,et al.Improvement of reaction ability of mimosa tannin with formaldehyde by photocatalysis[J].Journal of Forestry Engineering,2020,5(06):69.[doi:10.13360/j.issn.2096-1359.201903011]
[4]张辉,江健平,李静,等.二氧化钛/壳聚糖/丙烯酸复合水凝胶的原位交联及性能[J].林业工程学报,2020,5(02):76.[doi:10.13360/ j.issn.2096-1359.201901020]
 ZHANG Hui,JIANG Jianping,LI Jing,et al.Preparation and properties of TiO2/chitosan/acrylic acid in situ cross-linked composite hydrogel[J].Journal of Forestry Engineering,2020,5(06):76.[doi:10.13360/ j.issn.2096-1359.201901020]


收稿日期:2017-04-24 修回日期:2017-06-17
基金项目:江苏省自然科学基金面上项目(NBK20171450); 国家重点研发计划子课题(2017YFD0601005); 江苏省高等学校大学生创新创业训练计划(201610298079Y)。
更新日期/Last Update: 2017-11-15