[1]顾炼百,丁涛*,江宁.木材热处理研究及产业化进展[J].林业工程学报,2019,4(04):1-11.[doi:10.13360/j.issn.2096-1359.2019.04.001]
 GU Lianbai,DING Tao*,JIANG Ning.Development of wood heat treatment research and industrialization[J].Journal of Forestry Engineering,2019,4(04):1-11.[doi:10.13360/j.issn.2096-1359.2019.04.001]
点击复制

木材热处理研究及产业化进展()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
1-11
栏目:
专论综述
出版日期:
2019-07-09

文章信息/Info

Title:
Development of wood heat treatment research and industrialization
文章编号:
2096-1359(2019)04-0001-11
作者:
顾炼百1丁涛1*江宁2
1.南京林业大学材料科学与工程学院,南京 210037; 2.江苏星楠干燥设备有限公司,南京 210037
Author(s):
GU Lianbai1 DING Tao1* JIANG Ning2
1.College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Jiangsu Xinan Wood Drying Equipment Co.Ltd., Nanjing 210037, China
关键词:
木材热处理 木材性能 改性机理 产业化应用
Keywords:
wood heat treatment wood property property modification mechanism commercial application
分类号:
S784
DOI:
10.13360/j.issn.2096-1359.2019.04.001
文献标志码:
A
摘要:
热处理是在160 ℃以上低氧环境下进行的木材改性技术,可以改善木材的尺寸稳定性、生物耐久性和机械振动性能,同时能调节木材的材色,并且具有良好的环境友好性。但是高温处理也降低了木材的力学性能,对抗弯强度和冲击韧性的影响尤为显著。半纤维素在高温下的热解是热处理材改性的主要原因,它减少了木材中亲水基团和营养物质的数量,降低了木材的韧性,同时也影响了木材的明度指标。纤维素和木素在热处理过程中的变化相对较小,纤维素的结晶度有所上升,进一步降低了木材的亲水性,并提高了木材刚度; 木素的结构在处理过程中发生了重组,形成了更加稳固的网状结构,对细胞壁的膨胀具有抑制作用,同时也是木材材色变化的主要原因。热处理过程中产生的抽提物主要是半纤维素的降解产物,它们对木材的吸湿性和声学特性都有影响。热处理对木材性能的调节受诸多工艺参数影响,温度是对木材改性深度影响最大的因子,处理环境的压力和在最高处理温度下的处理时间也对改性效果产生影响。木材热处理目前已获得较为广泛的产业化应用,这一方面是得益于系统性的基础研究,另一方面是因为它具有环保、低成本、操作简便等优点。木材热处理目前已逐渐形成了一个较为完整的技术和理论体系,但在平衡性能提升与强度损失、保持材色稳定性等方面的研究仍具有持续深入和拓展的空间。
Abstract:
Wood heat treatment is a wood modification technology performed in an inert atmosphere at temperatures above 160 ℃, which can significantly improve dimensional stability, biological durability and vibrational properties of wood.Besides, it can adjust wood color and modify wood environmentally friendly.However, wood mechanical properties, especially bending strength and impact strength are weakened by the high temperature.The degradation of hemicelluloses is the factor dominating the properties of heat-treated wood, which reduces the hydrophilic groups and nutrient substances in the wood; lowers wood toughness and influences its brightness index.Cellulose and lignin undergo less pronounced changes during the treatment.The increase of cellulose crystallinity makes wood more hydrophobic and rigid.A more rigid cross-linked structure of lignin was formed during the treatment, which not only prohibits the swelling of cell wall but also is the main reason for the color change of the heat-treated wood.The heat-induced extractives are mainly degradation products of hemicelluloses and may affect hygroscopicity and vibrational properties of the wood.The modification degree of the heat-treated wood is affected by various processing factors, among which, temperature ranks No.1 followed by the pressure of treatment environment and remaining time at the maximum temperature.The treatment temperature of 200 ℃ is an altering point for the properties of the treated wood, above which the dimensional stability and biological durability can be significantly improved with the cost of great strength loss.Wood heat treatment has been widely used in the wood industries, which is resulted from the systematic fundamental studies on the one hand, and due to its good environmental, economic and technological advantages on the other hand.Although the theories and technologies of wood heat treatment have been well established, there still exist many unknowns need to be further explored.One challenge is to balance the property improvement and strength loss so that the application of the heat-treated wood can be further broadened.Keeping the color of the treated wood stable is another work worthy of considering especially for those trying to use it as an alternative to tropical species.The treatment equipment and its auxiliaries still have room to be updated to guarantee the long-term service of the system.

参考文献/References:

[1] PONCSAK S, KOCAEFE D, BOUZAZRA M, et al.Effect of high temperature treatment on the mechanical properties of birch(Betula papyrifera)[J].Wood Science and Technology, 2006, 40(8): 647-663.DOI:10.1007/s00226-006-0082-9.
[2] HAKKOU M, PETRISSANS M, ZOULALIAN A, et al.Investigation of wood wettability changes during heat treatment on the basis of chemical analysis[J].Polymer Degradation and Stability, 2005, 89(1): 1-5.DOI: 10.1016/j.polymdegradstab.2004.10.017.
[3] 丁涛,王长菊,彭文文.基于拉曼光谱分析的热处理松木吸湿机理研究[J].林业工程学报, 2016, 1(5): 15-19.DOI: 10.13360/j.issn.2096-1359.2016.05.003.
DING T, WANG C J, PENG W W.A theoretical study of moisture sorption behavior of heat-treated pine wood using Raman spectroscopic analysis[J].Journal of Forestry Engineering, 2016, 1(5): 15-19.
[4] JALALUDIN Z, HILL C, XIE Y.Analysis of the watervapour sorption isotherms of thermally modified acacia and sesendok[J].Wood Material Science & Engineering, 2010, 5(3/4):194-203.DOI:10.1080/17480272.2010.503940.
[5] 涂登云, 王明俊, 顾炼百, 等.超高温热处理对水曲柳板材尺寸稳定性的影响[J].南京林业大学学报(自然科学版), 2010, 34(3): 113-116.DOI: 10.3969/j.issn.1000-2006.2010.03.023.
TU D Y, WANG M J, GU L B, et al.Effect of super-high temperature heat treatment on Fraxinus mandshurica board's dimension stability[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(3): 113-116.
[6] LI T, CHENG D, AVRAMIDIS S, et al.Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood[J].Construction and Building Materials, 2017, 144: 671-676.DOI: 10.1016/j.conbuildmat.2017.03.218.
[7] PFRIEM A, ZAUER M, WAGENFUHR A.Alteration of the unsteady sorption behaviour of maple(Acer pseudoplatanus L.)and spruce(Picea abies(L.)Karst.)due to thermal modification[J].Holzforschung, 2010, 64(2): 235-241.DOI:10.1515/HF.2010.029.
[8] HILL C.Wood modification: chemical, thermal and other processes[M].Chichester: John Wiley & Sons, Ltd, 2006.
[9] CERMAK P, VAHTIKARI K, RAUTKARI L, et al.The effect of wetting cycles on moisture behavior of thermally modified Scots pine(Pinus sylvestris L.)wood[J].Journal of Materials Science, 2016, 51(3): 1504-1511.DOI:10.1007/s10853-015-9471-5.
[10] ALTGEN M, MILITZ H.Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system[J].Holzforschung, 2016, 70(10): 971-979.DOI:10.1515/hf-2015-0235.
[11] ENDO K, OBATAYA E, ZENIYA N, et al.Effects of heating humidity on the physical properties of hydrothermally treated spruce wood[J].Wood Science and Technology, 2016, 50(6):1161-1179.DOI:10.1007/s00226-016-0822-4.
[12] CAO Y, LU J, HUANG R, et al.Increased dimensional stability of Chinese fir through steam-heat treatment[J].European Journal of Wood and Wood Products, 2012, 70(4): 441-444.DOI:10.1007/s00107-011-0570-y.
[13] 丁涛, 顾炼百, 蔡家斌.热处理对木材吸湿特性及尺寸稳定性的影响[J].南京林业大学学报(自然科学版), 2015, 39(2): 143-147.DOI: 10.3969/j.issn.1000-2006.2015.02.025.
DING T, GU L B, CAI J B.Effects of heat treatment on the moisture adsorption characteristic and dimensional stability of wood[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(2): 143-147.
[14] ESTEVES B, DOMINGOS I, PEREIRA H.Improvement of technological quality of eucalypt wood by heat treatment in air at 170-200 ℃[J].Forest Product Journal, 2007, 57(1): 47-52.DOI:10.1007/s00226-006-0098-1.
[15] ESTEVES B, MARQUES V, DOMINGOS I, et al.Influence of steam heating on the properties of pine(Pinus pinaster)and eucalypt(Eucalyptus globulus)wood[J].Wood Science and Technology, 2007, 41(3):193-207.DOI:10.1007/s00226-006-0099-0.
[16] CANDELIER K, HANNOUZ S, THEVENON M, et al.Resistance of thermally modified ash(Fraxinus excelsior L.)wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites[J].European Journal of Wood and Wood Products, 2017, 75(2): 249-262.DOI:10.1007/s00107-016-1126-y.
[17] SUSTERSIC Z, MOHAREB A, CHAOUCH M, et al.Prediction of the decay resistance of heat treated wood on the basis of its elemental composition[J].Polymer Degradation and Stability, 2010, 95(1): 94-97.DOI: 10.1016/j.polymdegradstab.2009.10.013.
[18] CANDELIER K, DUMARCAY S, PETRISSANS A, et al.Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum[J].Polymer Degradation and Stability, 2013, 98(2): 677-681.DOI: 10.1016/j.polymdegradstab.2012.10.022.
[19] 顾炼百, 丁涛, 吕斌, 等.压力蒸汽热处理木材生物耐久性的研究[J].林产工业, 2010, 37(5): 6-9.DOI: 10.3969/j.issn.1001-5299.2010.05.002.
GU L B, DING T, LYU B, et al.Study on biological durability of pressurized steam-treated wood[J].China Forest Products Industry, 2010, 37(5): 6-9.
[20] 李晓文, 李民, 秦韶山, 等.高温热改性橡胶木的生物耐久性[J].林业科学, 2012, 48(4): 108-112.DOI:10.11707/j.1001-7488.20120418.
LI X W, LI M, QIN S S, et al.Biological durability of heat-treated rubber wood[J].Scientia Silvae Sinicae, 2012, 48(4): 108-112.
[21] KAMDEM D, PIZZI A, JERMANNAUD A.Durability of heat-treated wood[J].Holz als Roh- und Werkstoff, 2002, 60(1): 1-6.DOI:10.1007/s00107-001-0261-1.
[22] 李涛, 顾炼百, 江宁.高温热处理对水曲柳材色的影响[J].林业科学, 2009, 45(12):149-153.DOI: 10.3321/j.issn:1001-7488.2009.12.026.
LI T, GU L B, JIANG N.Effect of high temperature heat treatment on ash wood color[J].Scientia Silvae Sinicae, 2009, 45(12):149-153.
[23] 丁涛, 彭文文, 李涛.基于FT-IR和XPS的热处理白蜡木材色变化机理[J].林业工程学报, 2017, 2(5): 25-30.DOI:10.13360/j.issn.2096-1359.2017.05.005.
DING T, PENG W W, LI T.Mechanism of color change of heat-treated white ash wood by means of FT-IR and XPS analyses[J].Journal of Forestry Engineering, 2017, 2(5): 25-30.
[24] HUANG X, KOCAEFE D, KICAEFE Y.Aspectrocolorimetric and chemical study on color modification of heat-treated wood during artificial weathering[J].Applied Surface Science, 2012, 258(14): 5360-5369.DOI: 10.1016/j.apsusc.2012.02.005.
[25] HUANG X, KOCAEFE D, KOCAEFE Y, et al.Study of the degradation behavior of heat-treated jack pine(Pinus banksiana)under artificial sunlight irradiation[J].Polymer Degradation and Stability, 2012, 97(7): 1197-1214.DOI: 10.1016/j.polymdegradstab.2012.03.022.
[26] AYADI N, LEJEUNE F, CHARRIER F, et al.Color stability of heat-treated wood during artificial weathering[J].Holz als Roh- und Werkstoff, 2003, 61(3): 221-226.DOI:10.1007/s00107-003-0389-2.
[27] 郭飞, 黄荣凤, 余钢.热处理和改性PU 漆对木材光变色性能的影响[J].南京林业大学学报(自然科学版), 2015, 39(2): 169-173.DOI: 10.3969/j.issn.1000-2006.2015.02.029.
GUO F, HUANG R F, YU G.Effects of heat treatment and modified PU coating on photo-induced discoloration of wood[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(2): 169-173.
[28] GEORGE B, SUTTIE E, MERLIN A, et al.Photodegradation and photostabilisation of wood-the state of the art[J].Polymer Degradation and Stability, 2005, 88(2): 268-274.DOI: 10.1016/j.polymdegradstab.2004.10.018.
[29] KUBOJIMA Y, OKANO T, OHTA M.Bending strength and toughness of heat-treated wood[J].Journal of Wood Science, 2000, 46(1): 8-15.DOI:10.1007/BF00779547.
[30] KOCAEFE D, PONSCAK S, BOLUK Y.Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen[J].BioResources, 2008, 3(2): 517-537.DOI:10.1016/S0016-7037(00)00094-2.
[31] GUO F, HUANG R, LU J.Evaluating the effect of heat treating temperature and duration on selected wood properties using comprehensive cluster analysis[J].Journal of Wood Science, 2014, 60(4): 255-262.DOI:10.1007/s10086-014-1403-5.
[32] DING T, GU L, LI T.Influence of steam pressure on physical and mechanical properties of heat-treated Mongolian pine lumber[J].European Journal of Wood and Wood Products, 2010, 69(1): 121-126.DOI:10.1007/s00107-009-0406-1.
[33] 李涛, 顾炼百.185 ℃高温热处理对水曲柳木材力学性能的影响[J].林业科学, 2009, 45(2): 92-97.DOI: 10.3321/j.issn:1001-7488.2009.02.017.
LI T, GU L B.Effects of high temperature heat treatment at 185 ℃ on mechanical properties of ash wood[J].Scientia Silvae Sinicae, 2009, 45(2): 92-97.
[34] 李延军, 唐荣强, 鲍滨福, 等.高温热处理杉木力学性能与尺寸稳定性研究[J].北京林业大学学报, 2010, 32(4): 232-236.DOI:10.13332/j.1000-1522.2010.04.049.
LI Y J, TANG R Q, BAO B F, et al.Mechanical properties and dimensional stability of heat-treated Chinese fir[J].Journal of Beijing Forestry University, 2010, 32(4): 232-236.
[35] OBATAYA E.Effects of natural and artificial ageing on the physical and acoustic properties of wood in musical instruments[J].Journal of Cultural Heritage, 2017, 27: S63-S69.DOI: 10.1016/j.culher.2016.02.011.
[36] KUBOJIMA Y, OKANO T, OHTA M.Vibrational properties of Sitka spruce heat-treated in nitrogen gas[J].Journal of Wood Science,1998, 44(1): 73-77.DOI:10.1007/BF00521878.
[37] ZAUER M, KOWALESWKI A, SPROSSMANN R, et al.Thermal modification of European beech at relatively mild temperatures for the use in electric bass guitars[J].European Journal of Wood and Wood Products, 2016, 74: 43-48.DOI:10.1007/s00107-015-0973-2.
[38] ZENIYA N, ENDO-UJIIE K, OBATAYA E, et al.Effects of water-soluble extractives on the vibrational properties and color of hygrothermally treated spruce wood[J].Wood Science and Technology, 2019, 53(1):151-164.DOI:10.1007/s00226-018-1069-z.
[39] KRUGER R, ZAUER M, WAGENFUHR A.Physical properties of native and thermally treated European woods as potential alternative to Indian rosewood for the use in classical guitars[J].European Journal of Wood and Wood Products, 2018, 76(6):1663-1668.DOI:10.1007/s00107-018-1345-5.
[40] DING T, GUO X, ZHONG G, et al.Size distribution of heat-treated mongolian oak sawdust[C]// Proceedings of the 19th International Wood Machining Seminar.Nanjing, China, 2009.
[41] AYTIN A, KORKUT S.Effect of thermal treatment on the swelling and surface roughness of common alder and wych elm wood[J].Journal of Forest Research, 2016, 27(1): 225-229.DOI:10.1007/s11676-015-0136-7.
[42] DING T, GU L, ZHU N, et al.Influence of wood heat treatment on cutting tool temperature, surface quality and dust size distribution of Mongolian pine wood[C]// Proceedings of the 20th International Wood Machining Seminar.Skellefteå, Sweden, 2011.
[43] ALTGEN M, MILITZ H.Thermally modified Scots pine and Norway spruce wood as substrate for coating systems[J].Journal of Coatings Technology and Research, 2017, 14(3):531-541.DOI:10.1007/s11998-016-9871-8.
[44] 顾炼百, 丁涛, 王明俊, 等.高温热处理木材胶合性能的研究[J].林产工业, 2010, 37(2): 15-18.DOI: 10.3969/j.issn.1001-5299.2010.02.004.
GU L B, DING T, WANG M J, et al.Study on bonding performance of high-temperature heat-treated wood[J].China Forest Products Industry, 2010, 37(2): 15-18.
[45] FERREIRA J, ESTEVES B, NUNES L, et al.Life cycle assessment of thermally treated and untreated maritime pine boards: a Portuguese case study[C]//Proceedings of the 7th European Conference on Wood Modification.Lisbon, Portugal, 2014.
[46] ALA-VIIKARI J.Executive summary-thermowood: life cycle assessment(LCA)of finnish thermally modified wood cladding[R].Espoo:Koivuniemi Ltd,2008.
[47] LABAT G, BUCKET E, LEGAY S, et al.Environmental characterization of ratification process by-products(liquid and gaseous wastes)[C]//Proceedings of the 6th International Symposium “Environment and Wood Preservation”.Cannes-Mandelieu, France, 2005.
[48] MANNINEN A, PASANEN P, HOLOPAINEN J.Comparing the VOC emissions between air-dried and heat-treated Scots pine wood[J].Atmospheric Environment, 2002, 36(11):1763-1768.DOI:10.1016/s1352-2310(02)00152-8.
[49] SANDBER D, KUTNAR A.Thermally modified timber: recent developments in Europe and North America[J].Wood and Fiber Science, 2016, 48: 28-39.
[50] ALEN R, KOTILAINEN R, ZAMAN A.Thermochemical behavior of Norway spruce(Picea abies)at 180-225 ℃[J].Wood Science and Technology, 2002, 36(2):163-171.DOI:10.1007/s00226-001-0133-1.
[51] SUNDQVIST B, KARLSSON O, WESTERMARK U.Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation tocolour, strength and hardness[J].Wood Science and Technology, 2006, 40: 549-561.DOI:10.1007/s00226-006-0071-z.
[52] HAKKOU M, PETRISSANS M, GERARDIN P, et al.Investigations of the reasons for fungal durability of heat-treated beech wood[J].Polymer Degradation and Stability, 2006, 91(2): 393-397.DOI: 10.1016/j.polymdegradstab.2004.04.042.
[53] PARK Y, JANG S, PARK J, et al.Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam[J].Journal of Wood Science, 2017, 63(6): 635-643.DOI:10.1007/s10086-017-1657-9.
[54] DING T, GU L, LIU X.Influence of steam pressure on chemical changes of heat-treated Mongolian pine lumber[J].BioResources, 2011, 6(2), 1880-1889.DOI:10.5552/drind.2011.1106.
[55] BORREGA M, KARENLAMPI P.Effect of relative humidity on thermal degradation of Norway spruce(Picea abies)wood[J].Journal of Wood Science, 2008, 54(4): 323-328.DOI:10.1007/s10086-008-0953-9.
[56] JIANG J, LU J, ZHOU Y, et al.Optimization of processing variables during heat treatment of oak(Quercus mongolica)wood[J].Wood Science and Technology, 2014, 48(2):253-267.DOI:10.1007/s00226-013-0600-5.
[57] ROSEN H, BODKIN R.Steam drying lumber above atmospheric pressure[C]//Proceedings of the 23nd Western Dry Kiln Clubs.Covallis, USA, 1981.
[58] CANDELIER K, DUMARCAY S, PETRISSANS A, et al.Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuum[J].Polymer Degradation and Stability, 2013, 98(9): 1762-1765.DOI: 10.1016/j.polymdegradstab.2013.05.026.
[59] YILDIZA S, GEZERB E, YILDIZA U.Mechanical and chemical behavior of spruce wood modified by heat[J].Building and Environment, 2006, 41(12): 1762-1766.DOI:10.1016/j.buildenv.2005.07.017.
[60] JOHANSSON D, MOREN T.The potential of colour measurement for strength prediction of thermally treated wood[J].Holz als Roh- und Werkstoff, 2006, 64(2): 104-110.DOI:10.1007/s00107-005-0082-8.
[61] WALKER J.Primary wood processing, principles and practices[M].2nd ed.Dordrecht: Springer, 2006.
[62] ROWELL R.Handbook of wood chemistry and wood composites[M].Boca Raton: CRC Press, 2005.
[63] TJEERDSMA B, MILITZ H.Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J].Holz als Roh- und Werkstoff, 2005, 63(2):102-111.DOI:10.1007/s00107-004-0532-8.
[64] KYMALAINEN M, MLOUKA S B, BELT T, et al.Chemical, watervapour sorption and ultrastructural analysis of Scots pine wood thermally modified in high pressure reactor under saturated steam[J].Journal of Materials Science, 2018, 53(4): 3027-3037.DOI:10.1007/s10853-017-1714-1.
[65] WEILAND J, GUYONNET R.Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy[J].Holz als Roh- und Werkstoff, 2003, 61(3): 216-220.DOI:10.1007/s00107-003-0364-y.
[66] HUGHES M, HILL C, PFRIEM A.The toughness of hygrothermally modified wood:a review[J/OL].Holzforschung, 2015.DOI:10.1515/hf-2014-0184.
[67] SALCA E, KOBORI H, INAGAKI T, et al.Effect of heat treatment oncolour changes of black alder and beech veneers[J].Journal of Wood Science, 2016, 62(4): 297-304.DOI:10.1007/s10086-016-1558-3.
[68] LIN B, COLIN B, CHEN W, et al.Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum[J].Journal of Analytical and Applied Pyrolysis, 2018, 130: 8-18.DOI:10.1016/j.jaap.2018.02.005.
[69] WIKBERG H, MAUNU S.Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR[J].Carbohydrate Polymers, 2004, 58(4): 461-466.DOI:10.1016/j.carbpol.2004.08.008.
[70] 丁涛, 贝政廷, 李源.杉木热处理材结晶度及力学性能的研究[J].林业科技开发, 2012, 26(2): 23-26.DOI: 10.3969/j.issn.1000-8101.2012.02.007.
DING T, BEI Z T, LI Y.Influence of heat treatment on crystallinity and mechanical properties of Chinese fir lumber[J].China Forestry Science and Technology, 2012, 26(2): 23-26.
[71] YIN Y, BERGLUND L, SALMEN L.Effect of steam treatment on the properties of wood cell walls[J].Biomacromolecules, 2011, 12(1): 194-202.DOI:10.1021/bm101144m.
[72] BOONSTRA M, TJEERDSMA B.Chemical analysis of heat treated softwoods[J].Holz als Roh- und Werkstoff, 2006, 64: 204-211.DOI:10.1007/s00107-005-0078-4.
[73] 邓邵平, 江茂生, 陈孝云, 等.杉木间伐材高温热处理后化学成分的变化[J].林业科学, 2009, 45(11): 121-126.DOI:10.3321/j.issn:1001-7488.2009.11.020.
DENG S P, JIANG M S, CHEN X Y,et al.Changing rules of components of Cunninghamia lanceolata thinning wood in heat treating process[J].Scientia Silvae Sinicae, 2009, 45(11): 121-126.
[74] MECCA M, D'AURIA M, TODARO L.Effect of heat treatment on wood chemical composition, extraction yield and quality of the extractives of some wood species by the use of molybdenum catalysts[J].Wood Science and Technology, 2019, 53(1):119-133.DOI:10.1007/s00226-018-1057-3.
[75] TJEERDSMA B, BOONSTRA M, PIZZI A, et al.Characterisation of thermally modified wood: molecular reasons for wood performance improvement[J].Holz als Roh- und Werkstoff, 1998, 56: 149-153.DOI:10.1007/s001070050287.
[76] GONZALEZ-PENA M, HALE M.Colour in thermally modified wood of beech, Norway spruce and Scots pine.Part 1: Colour evolution and colour changes[J].Holzforschung, 2009, 63(4): 385-393.DOI:10.1515/HF.2009.078.
[77] KAMDEM D P, PIZZI A, TRIBOULOT M C.Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation[J].Holz als Roh- und Werkstoff, 2000, 58(4): 253-257.DOI:10.1007/s001070050420.
[78] BOONSTRA M J, ACKER J V, KEGEL E, et al.Optimisation of a two-stage heat treatment process: durability aspects[J].Wood Science and Technology, 2007, 41(1):31-57.DOI:10.1007/s00226-006-0087-4.
[79] BIZIKS V, ANDERSONS B, BELKOVA L, et al.Changes in the microstructure of birch wood after hydrothermal treatment[J].Wood Science and Technology, 2013, 47(4):717-735.DOI:10.1007/s00226-013-0531-1.
[80] DING T, ZHANG Y, WANG N, et al.Comparative study on microstructure of Mongolian pine wood thermally treated in steam condition[C]//Proceedings of 2012 International Conference on Biobase Material Science and Engineering.Changsha, China, 2012.
[81] BRANDT B, ZOLLFRANK C, FRANKE O, et al.Micromechanics and ultrastructure of pyrolysed softwood cell walls[J].Acta Biomaterialia, 2010, 6(11): 4345-4351.DOI:10.1016/j.actbio.2010.05.026.
[82] SANDBERG D, HALLER P, NAVI P.Thermo-hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products[J].Wood Material Science & Engineering, 2013, 8(1): 64-88.DOI:10.1080/17480272.2012.751935.
[83] STAMM A, HANSEN L A.Minimizing wood shrinkage and swelling: effect of heating in various gases[J].Industrial and Engineering Chemistry, 1937, 29(7): 831-833.DOI:10.1021/ie50312a022.
[84] STAMM A J, BURR H K, KLINE A A.Staybwood:heat-stabilized wood[J].Industrial and Engineering Chemistry, 1946, 38(6): 630-634.DOI:10.1021/ie50438a027.
[85] STAMM A.Thermal degradation of wood and cellulose[J].Industrial and Engineering Chemistry, 1956, 48(3): 413-417.DOI:10.1021/ie51398a022.
[86] 丁涛, 蔡家斌, 耿君.欧洲木材热处理产业和标准化[J].木材工业, 2015, 29(3): 26-30.DOI:10.19455/j.mcgy.2015.03.007.
DING T, CAI J B, GENG J.Review on thermally modified timber industry and standardization in Europe[J].China Wood Industry, 2015, 29(3): 26-30.
[87] International thermowood association.Production statistics 2017[R/DB].(2018-04-10)[2018-12-07]https://asiakas.kotisivukone.com/files/en.thermowood.palvelee.fi/ uutiset/Productionstatistics2017.pdf.
[88] UNECE.Forest products annual market review 2012-2013[R].Geneva, Switzerland: United Nations Economic Commission for Europe, 2013.
[89] CAI J, YANG X, CAI L, et al.Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber[J].Drying Technology, 2013, 31(10): 1107-1113.DOI:10.1080/07373937.2013.775147.
[90] CERMAK P, DOMENY J, BRABEC M.Unevenly distributed thermal treatment of wood: preliminary study-density proles[J].European Journal of Wood and Wood Products, 2016, 74(4): 629-631.DOI:10.1007/s00107-016-1031-4.

相似文献/References:

[1]丁涛,贝政廷,李源.杉木热处理材结晶度及力学性能的研究[J].林业工程学报,2012,26(02):23.
 DING Tao,BEI Zheng ting,LI Yuan.Influence of heat treatment on crystallinity and mechanical properties of Chinese fir lumber[J].Journal of Forestry Engineering,2012,26(04):23.
[2]丁涛,王长菊,彭文文.基于拉曼光谱分析的热处理松木吸湿机理研究[J].林业工程学报,2016,1(05):15.[doi:10.13360/j.issn.2096-1359.2016.05.003]
 DING Tao,WANG Changju,PENG Wenwen.A theoretical study of moisture sorption behavior of heat-treated pine wood using Raman spectroscopic analysis[J].Journal of Forestry Engineering,2016,1(04):15.[doi:10.13360/j.issn.2096-1359.2016.05.003]
[3]丁涛,彭文文,李涛.基于FT-IR和XPS的热处理白蜡木材色变化机理[J].林业工程学报,2017,2(05):25.[doi:10.13360/j.issn.2096-1359.2017.05.005]
 DING Tao,PENG Wenwen,LI Tao.Mechanism of color change of heat-treated white ash wood by means of FT-IR and XPS analyses[J].Journal of Forestry Engineering,2017,2(04):25.[doi:10.13360/j.issn.2096-1359.2017.05.005]

备注/Memo

备注/Memo:
收稿日期:2019-02-19 修回日期:2019-05-05
基金项目:江苏省政策引导类计划项目(SZ-SQ2017012)。
作者简介:顾炼百,男,教授,研究方向为木材干燥及热处理。通信作者:丁涛,男,副教授。E-mail: dtroy921@hotmail.com
更新日期/Last Update: 2019-07-10