[1]候兴爱,孙丰文*,钱曹厉.木基缠绕管用复合板带偏轴拉伸力学性能研究[J].林业工程学报,2019,4(04):22-28.[doi:10.13360/j.issn.2096-1359.2019.04.003]
 HOU Xing'ai,SUN Fengwen*,QIAN Caoli.Study on off-axis tensile mechanical properties of veneer strips for wood-based winding pipe[J].Journal of Forestry Engineering,2019,4(04):22-28.[doi:10.13360/j.issn.2096-1359.2019.04.003]
点击复制

木基缠绕管用复合板带偏轴拉伸力学性能研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
22-28
栏目:
木材科学与技术
出版日期:
2019-07-09

文章信息/Info

Title:
Study on off-axis tensile mechanical properties of veneer strips for wood-based winding pipe
文章编号:
2096-1359(2019)04-0022-07
作者:
候兴爱孙丰文*钱曹厉
南京林业大学材料科学与工程学院,南京 210037
Author(s):
HOU Xing'ai SUN Fengwen* QIAN Caoli
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
木基缠绕管 偏轴拉伸 弹性模量 拉伸强度 泊松比
Keywords:
wood-based winding pipe off-axis tensile Young's modulus tensile strength Poisson's ratio
分类号:
S784
DOI:
10.13360/j.issn.2096-1359.2019.04.003
文献标志码:
A
摘要:
为了研究木基缠绕管用复合板带的偏轴力学性能,按照与复合板带较厚层的顺纹方向成0°,15°,30°,45°,60°,75°和90°制备试样进行拉伸试验,根据是否添加纤维布得到了2种复合板带各7种破坏形式、应力-应变曲线、泊松比、弹性模量和拉伸强度。通过数值拟合、Transformation law公式、Hankinsion公式、最大应力强度准则以及蔡-希尔强度准则对板带力学性能进行分析预测。结果表明:复合板带的破坏形式主要为单板顺纹方向的纤维拉断和横纹方向的剪切破坏,纤维布的加入加剧了剪切破坏; 在偏轴应力下,0°到90°复合板带试样的承载力、弹性模量和拉伸强度随偏轴角的增大呈先降低再增大的变化规律,且在47°下取得最低值; 泊松比随偏轴角的增大呈先增大后降低的变化规律。未加纤维布复合板带的弹性模量可以通过Transformation law公式准确预测; 泊松比可以通过数值拟合的二次函数准确预测; 拉伸强度可以通过蔡-希尔强度准则预测。而纤维布加入到复合板带中,会使其受偏轴拉伸载荷时的应力-应变更加复杂,力学性能的试验值与预测结果误差较大。
Abstract:
Usually, water pipes are made from concrete, PVC, ductile iron, polypropylene, which cause the emission of greenhouse gas(GHG)and affect the environments.In order to reduce the GHG emission in China, the fast-growing wood was used to develop green and environmental-friendly wood-based winding pipes.The structural layer of the pipe was formed by the multi-layer winding of poplar veneer strips at a certain winding angle, where the veneer strip was made of two poplar veneer layers of different thicknesses with sound flexibility.The off-axis direction was the main direction for the veneer strips to bear internal pressures.Therefore, it is necessary to study the mechanical properties of the structural layer to reveal the off-axis mechanical properties of veneers.According to whether the fiber cloth reinforcement layer was added, tensile tests were carried out on specimens prepared in the direction of 0°, 15°, 30°, 45°, 60°, 75° or 90° along the grain direction of the thicker layer of the composite strips.The failure modes, stress-strain curves, Poisson's ratio, Young's modulus and tensile strength of the seven groups of samples were obtained.Through numerical fitting, Transformation law formula, Hankinsion formula, maximum stress intensity criterion and Tsai-Hill strength criterion, the relevant mechanical properties of the veneer strips were analyzed and predicted.The results showed that the failure modes of the veneer strips were mainly the fiber pull-off from the veneer and the shear failure along the grain direction, moreover, the addition of fiber cloth made the shear failure of the veneer strip more serious.Under the off-axis stress, the bearing capacity, the Young's modulus and tensile strength of the veneer strips was reduced firstly and then increased, and reached their minimum value at 47°.The Poisson's ratio of the two veneer strips increased firstly and then decreased with the increase of the off-axis angle.The Young's modulus of the un-fibered veneer strip could be accurately predicted by the Transformation law formula; the Poisson's ratio could be accurately predicted by the quadratic function of the numerical fitting, and the tensile strength of the veneer strip could be predicted by the Tsai-Hill strength criterion, while the maximum stress intensity criterion was accurate only between 0° and 70°.As the fiber cloth was added to the veneer strip, the stress-strain was more complicated when subjected to the off-axis tensile load, and the experimental values of the mechanical properties deviated greatly from the predicted results.

参考文献/References:

[1] 师志刚, 刘群昌, 白美健, 等.压力管道输水灌溉优化设计研究进展[J].水利与建筑工程学报, 2017, 15(1): 1-7,38.DOI:10.3969/j.issn.1672-1144.2017.01.001.
SHI Z G, LIU Q C, BAI M J, et al.Research advances on pressure pipeline irrigation optimal design[J].Journal of Water Resources and Architectural Engineering, 2017, 15(1): 1-7,38.
[2] 李娜, 赵宇, 王丽娟, 等.管道输水技术在南水北调西线一期工程中应用的可行性研究[J].水利与建筑工程学报, 2018, 16(3): 235-240.DOI:10.3969/j.issn.1672-1144.2018.03.043.
LI N, ZHAO Y, WANG L J, et al.Application feasible of conduit conveyance technology in the western route of south to north water transfer project[J].Journal of Water Resources and Architectural Engineering, 2018, 16(3): 235-240.
[3] PAUL M M, RAVIKUMAR P.Review on development of polymer mortar composite[J].International Journal of Engineering Science and Computing, 2016, 6(6): 7945-7948.DOI: 10.4010/2016.1862.
[4] 南京林业大学.高性能木基复合压力输送管及制备方法:104896211A[P].2015-09-09.
Nanjing Forestry University.High performance wood-based composite pressure conveyor pipe and its preparation method:104896211A [P].2015-09-09.
[5] LIU H G, LUO B, SHEN S J, et al.Design and mechanical tests of FRP pipe with bamboo and veneer layer[J].BioResources, 2017, 12(2):2699-2710.DOI:10.15376/biores.12.2.2699-2710.
[6] 费本华, 陈美玲, 王戈, 等.竹缠绕技术在国民经济发展中的地位与作用[J].世界竹藤通讯, 2018, 16(4): 1-4.DOI:10.13640/j.cnki.wbr.2018.04.001.
FEI B H, CHEN M L, WANG G, et al.Status and role of bamboo winding technology in national economic development[J].World Bamboo and Rattan, 2018, 16(4): 1-4.
[7] 李海栋, 陈复明, 程海涛, 等.竹束杨木单板复合板偏轴拉伸力学性能研究[J].材料导报, 2016, 30(18): 159-163.DOI:10.11896/j.issn.1005-023X.2016.18.033.
LI H D, CHEN F M, CHENG H T, et al.Analysis of the mechanical properties of bamboo-wood hybrid laminated composite by off-axis tension tests[J].Materials Review, 2016, 30(18): 159-163.
[8] 罗江丽, 杨家富, 杨淑琴, 等.杨木单板顺纹拉伸性能研究[J].林业机械与木工设备, 2010, 38(10): 31-33.DOI:10.3969/j.issn.2095-2953.2010.10.009.
LUO J L, YANG J F, YANG S Q, et al.Study on tensile property parallel to the grain of poplar veneer[J].Forestry Machinery & Woodworking Equipment, 2010, 38(10): 31-33.
[9] RITSCHEL F, ZHOU Y, BRUNNER A J, et al.Acoustic emission analysis of industrial plywood materials exposed to destructive tensile load[J].Wood Science and Technology, 2014, 48(3): 611-631.DOI:10.1007/s00226-014-0628-1.
[10] YOSHIHARA H.Prediction of the off-axis stress-strain relation of wood under compression loading[J].European Journal of Wood and Wood Products, 2009, 67(2): 183-188.DOI:10.1007/s00107-009-0320-6.
[11] WOODWARD C, MINOR J.Further studies on elastic properties of douglas fir[J].Journal of Materials in Civil Engineering, 1989, 1(1): 19-30.DOI:10.1061/(asce)0899-1561(1989)1:1(19).
[12] COWIN S C.On the strength anisotropy of bone and wood[J].Journal of Applied Mechanics, 1979, 46(4): 832-838.DOI:10.1115/1.3424663.
[13] PATTON-MALLORY M, PELLICANE P J, SMITH F W, et al.Qualitative assessment of failure in bolted connections: maximum stress criterion[J].Journal of Testing and Evaluation, 1998, 26(5): 489-496.DOI:10.1520/jte12693j.
[14] KHAROUF N, MCCLURE G, SMITH I.Elasto-plastic modeling of wood bolted connections[J].Computers & Structures, 2003, 81(8): 747-754.DOI:10.1016/s0045-7949(02)00482-0.
[15] MOSES D M, PRION H G L.A three-dimensional model for bolted connections in wood[J].Canadian Journal of Civil Engineering, 2003, 30(3): 555-567.DOI:10.1139/l03-009.
[16] ROWLANDS R E, GUNDERSON D E, SUHLING J C, et al.Biaxial strength of paperboard predicted by hill-type theories[J].The Journal of Strain Analysis for Engineering Design, 1985, 20(2): 121-127.DOI:10.1243/03093247V202121.
[17] FISCHER L.How to predict structural behavior of reinforced plastic laminates[J].Modern Plastics, 1960, 37(3): 121-128.
[18] ASHKENAZI E K.Problems of the anisotropy of strength[J].Polymer Mechanics, 1966, 1(2): 60-70.DOI:10.1007/bf00860686.

备注/Memo

备注/Memo:
收稿日期:2018-10-23 修回日期:2019-01-18
基金项目:“十三五”国家重点研发计划(2018YFD0600305)。
作者简介:候兴爱,男,研究方向为木基复合材料。通信作者:孙丰文,男,研究员。E-mail:sunfw2188@163.com
更新日期/Last Update: 2019-07-10