[1]胡涛平,喻孜*,郭露,等.木质粉尘燃爆的热力学自洽动力学模型[J].林业工程学报,2019,4(04):29-34.[doi:10.13360/j.issn.2096-1359.2019.04.004]
 HU Taoping,YU Zi*,GUO Lu,et al.Thermodynamic self-consistent dynamic model of wood dust explosion[J].Journal of Forestry Engineering,2019,4(04):29-34.[doi:10.13360/j.issn.2096-1359.2019.04.004]
点击复制

木质粉尘燃爆的热力学自洽动力学模型()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
29-34
栏目:
木材科学与技术
出版日期:
2019-07-09

文章信息/Info

Title:
Thermodynamic self-consistent dynamic model of wood dust explosion
文章编号:
2096-1359(2019)04-0029-06
作者:
胡涛平1喻孜1*郭露2徐长妍2
1.南京林业大学理学院,南京 210037; 2.南京林业大学材料科学与工程学院,南京 210037
Author(s):
HU Taoping1 YU Zi1* GUO Lu2 XU Changyan2
1.College of Science, Nanjing Forestry University, Nanjing 210037, China; 2.College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
木质粉尘 粉尘燃爆 最大爆炸压力 动力学模型 热力学自洽
Keywords:
wood dust dust explosion maximum explosion pressure dynamic model thermodynamic self-consistency
分类号:
S781.3
DOI:
10.13360/j.issn.2096-1359.2019.04.004
文献标志码:
A
摘要:
基于热力学定律以及燃烧化学反应动力学,考虑反应生成物所带来的热力学效应和木质粉尘的吸热效应,构建了木质粉尘燃爆的热力学自洽动力学理论模型。利用该模型对不同粒径和不同浓度的木质粉尘燃爆试验数据进行了模拟仿真,并与已有理论模型进行了对比。结果表明,在20 L爆炸球内反应生成物以及木质粉尘的吸热均随温度的升高迅速增加,最大爆炸压力值随之降低; 采用本理论模型计算得到的最大爆炸压力与试验测量数据高度吻合,成功解决了已有模型存在的问题。此外,利用本理论模型计算了20 L爆炸球内气体的分子间距。在整个爆炸过程中,气体分子间距与分子直径的比值处于10.6~11.2区间内,即分子间距一直保持在分子直径的10倍以上,满足理想气体模型对气体分子间距的要求,充分证实了本研究所构建理论模型的热力学自洽性。本研究结果对除尘器、加料仓及传输管道泄爆面积的计算,以及相应隔爆装置的选择,对加工设备表面及管道内壁的热传感器和火花探测器的选择均有重要意义,对纤维板生产线中粉尘易爆设备的防爆和减灾技术研发具有理论指导价值。
Abstract:
According to the laws of thermodynamics and the dynamics of chemical reactions, a thermodynamic self-consistent dynamic model of wood dust explosion was developed by considering the thermodynamic effect of reaction products and the heat absorption effect of wood dust.The experimental data were simulated based on this model, and the simulation results were compared with those of the existing theoretical models.The results showed that, for the different wood dust concentrations and wood dust particle sizes, the heat absorption of reaction products and wood dust in 20 L explosion sphere increased with the rapid increase of temperature.Therefore, the maximum pressure of the wood dust explosion was decreased, which led to that the theoretical simulation results of maximum explosion pressure were highly consistent with the experimental data.The problem of large deviation between theoretical calculation and experimental data fitting in the existing theoretical models was solved successfully.At different dust concentrations, the maximum explosion pressure calculated by this model did not increase monotonically with the increase of dust concentration.As a matter of fact, the maximum explosion pressure reached a certain concentration in the middle, which was consistent with the test results.Under different dust particle sizes, the fitting degree of explosion pressure evolution and test data simulated by this model was much higher than that of the existing models, and the maximum explosion pressure value was very close to the measured data.Furthermore, the ratio of molecular distance to molecular diameter was calculated using the thermodynamic self-consistent dynamic model of wood dust explosion.During the whole explosion, the ratio was between 10.6 and 11.2, that is, the molecular distance remained more than 10 times of the molecular diameter.It was shown that the gas molecular distance satisfied the ideal gas model, which fully verified the thermodynamic self-consistency of this model.The results of the dynamic model research of wood dust explosion were of great significance to the estimation for the discharge area of the dust collector, the feeding bin and the transmission pipeline, the selection of the corresponding flameproof device, and the selection of the thermal sensor and spark detector on the surface of the processing equipment and the inner wall of the pipeline.The results of this study also had the theoretical merit for the research and development of explosion protection, and the disaster reduction technology of dust explosive equipment in the fiber board production line.

参考文献/References:

[1] ECKHOFF R K.Current status and expected future trends in dust explosion research[J].Journal of Loss Prevention in the Process Industries, 2005, 18(4/5/6): 225-237.DOI:10.1016/j.jlp.2005.06.012.
[2] LI G, YANG H X, YUAN C M, et al.A catastrophic aluminium-alloy dust explosion in China[J].Journal of Loss Prevention in the Process Industries, 2016, 39: 121-130.DOI:10.1016/j.jlp.2015.11.013.
[3] MEDINA C H, MacCOITIR B, SATTAR H, et al.Comparison of the explosion characteristics and flame speeds of pulverised coals and biomass in the ISO standard 1 m3 dust explosion equipment[J].Fuel, 2015, 151: 91-101.DOI:10.1016/j.fuel.2015.01.009.
[4] ADDAIE K, GABEL D, KAMAL M, et al.Minimum ignition energy of hybrid mixtures of combustible dusts and gases[J].Process Safety and Environmental Protection, 2016, 102: 503-512.DOI:10.1016/j.psep.2016.05.005.
[5] 吴林, 周曦禾, 崔忠文, 等.马尾松粉尘云最小着火能点火延迟时间的研究[J].木材加工机械,2018, 29(4): 16-19.DOI:10.13594/j.cnki.mcjgjx.2018.04.004.
WU L, ZHOU X H, CUI Z W, et al.Study of ignition delay time on determining MIE of Pinus Massoniana wood dust cloud explosion[J].Wood Processing Machinery, 2018, 29(4): 16-19.
[6] 张静, 周捍东.毛竹粉尘云爆炸最低着火温度的研究[J].木材加工机械, 2018, 29(5): 14-18.DOI: 10.13594/j.cnki.mcjgjx.2018.05.005.
ZHANG J, ZHOU H D.Study on minimum ignition temperature of bamboo dust clouds explosion[J].Wood Processing Machinery, 2018, 29(5): 14-18.
[7] 崔忠文, 周曦禾, 周捍东, 等.杨木粉尘云与粉尘层最低着火温度研究[J].木材工业, 2019, 33(3): 11-15.DOI:10.19455/j.mcgy.20190203.
CUI Z W, ZHOU X H, ZHOU H D, et al.Minimum ignition temperature of dust cloud and dust layer of popular wood[J].China Wood Industry, 2019, 33(3): 11-15.
[8] CASHDOLLAR K L.Overview of dust explosibility characteristics[J].Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5): 183-199.DOI:10.1016/s0950-4230(99)00039-x.
[9] LI Q Z, WANG K, ZHENG Y N, et al.Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel[J].Powder Technology, 2016, 301: 1299-1308.DOI:10.1016/j.powtec.2016.08.012.
[10] TAN R M, ZHANG Q, ZHANG B.Effects of ignition delay time on characteristic parameters of aluminum dust explosion[J].Explosion & Shock Waves, 2014, 34(1):17-22.
[11] YAN X Q, YU J L.Overpressure characteristics of aluminium dust explosion vented through a relief pipe[J].Journal of Loss Prevention in the Process Industries, 2013, 26(4): 676-682.DOI:10.1016/j.jlp.2013.01.003.
[12] LI M L.Research on protection measures and explosion about aluminum dust[J].Procedia Engineering, 2012, 43: 516-518.DOI:10.1016/j.proeng.2012.08.089.
[13] CASHDOLLAR K L.Coal dust explosibility[J].Journal of Loss Prevention in the Process Industries, 1996, 9(1): 65-76.DOI:10.1016/0950-4230(95)00050-x.
[14] LI Q Z, WANG K, ZHENG Y N, et al.Experimental research of particle size and size dispersity on the explosibility characteristics of coal dust[J].Powder Technology, 2016, 292: 290-297.DOI:10.1016/j.powtec.2016.01.035.
[15] SOUNDARARAJAN R, AMYOTTE P R, PEGG M J.Explosibility hazard of iron sulphide dusts as a function of particle size[J].Journal of Hazardous Materials, 1996, 51(1/2/3): 225-239.DOI:10.1016/s0304-3894(96)01825-0.
[16] SWEIS F K, SINCLAIR C G.The effect of particle size on the maximum permissible oxygen concentration to prevent dust explosions[J].Journal of Hazardous Materials, 1985, 10(1): 59-71.DOI:10.1016/0304-3894(85)80005-4.
[17] GAO W, MOGI T, SUN J H, et al.Effects of particle size distributions on flame propagation mechanism during octadecanol dust explosions[J].Powder Technology, 2013, 249: 168-174.DOI:10.1016/j.powtec.2013.08.007.
[18] GAO W, MOGI T, YU J L, et al.Flame propagation mechanisms in dust explosions[J].Journal of Loss Prevention in the Process Industries, 2015, 36: 186-194.DOI:10.1016/j.jlp.2014.12.021.
[19] HAN O S, YASHIMA M, MATSUDA T, et al.Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J].Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457.DOI:10.1016/s0950-4230(99)00072-8.
[20] PROUST C.A few fundamental aspects about ignition and flame propagation in dust clouds[J].Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 104-120.DOI:10.1016/j.jlp.2005.06.035.
[21] BIDABADI M, RAHBARI A.Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles[J].Journal of Mechanical Science and Technology, 2009, 23(9): 2417-2423.DOI:10.1007/s12206-009-0710-z.
[22] di BENEDETTO A, RUSSO P.Thermo-kinetic modelling of dust explosions[J].Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 303-309.DOI:10.1016/j.jlp.2007.04.001.
[23] GARCÍA-TORRENT J, CONDE-LÁZARO E, WILÉN C, et al.Biomass dust explosibility at elevated initial pressures[J].Fuel, 1998, 77(9/10): 1093-1097.DOI:10.1016/s0016-2361(97)00285-8.
[24] RAHMAN N A, TAKRIFF M S.Consequence modelling of dust explosion[J].International Journal of Safety and Security Engineering, 2013, 3(3): 212-219.DOI:10.2495/safe-v3-n3-212-219.
[25] DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al.Dust explosions in spherical vessels:the role of flame thickness in the validity of the ‘cube-root law'[J].Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33-44.DOI:10.1016/0950-4230(95)00054-2.
[26] 周曦禾, 周捍东, 丁涛, 等.木材加工企业木粉尘燃爆成因剖析及其防控[J].林产工业, 2015, 42(11): 49-52.DOI:10.3969/j.issn.1001-5299.2015.11.012.
ZHOU X H, ZHOU H D, DING T, et al.Analysis of causes of wood dust explosion in wood processing enterprises and its prevention measures[J].China Forest Products Industry, 2015, 42(11): 49-52.
[27] 马汉翔, 毛浩清, 张军, 等.梧桐树粉尘爆炸特性研究[J].爆破器材, 2017, 46(6): 17-20, 25.DOI:10.3969/j.issn.1001-8352.2017.06.004.
MA H X, MAO H Q, ZHANG J, et al.Explosion characteristics of Chinese parasol tree dust[J].Explosive Materials, 2017, 46(6): 17-20, 25.
[28] CALLÉ S, KLABA L, THOMAS D, et al.Influence of the size distribution and concentration on wood dust explosion: experiments and reaction modelling[J].Powder Technology, 2005, 157(1/2/3): 144-148.DOI:10.1016/j.powtec.2005.05.021.
[29] LIDE D R.Handbook of chemistry and physics[M].66th ed.Florida:CRC Press Inc., 1986.

相似文献/References:

[1]胡涛平,喻孜*,郭露,等.木质粉尘燃爆的爆炸指数理论评估[J].林业工程学报,2019,4(01):27.[doi:10.13360/j.issn.2096-1359.2019.01.004]
 HU Taoping,YU Zi*,GUO Lu,et al.Theoretical evaluation of explosion index for wood dust explosion[J].Journal of Forestry Engineering,2019,4(04):27.[doi:10.13360/j.issn.2096-1359.2019.01.004]

备注/Memo

备注/Memo:
收稿日期:2018-08-21 修回日期:2018-09-25
基金项目:国家重点研发计划(2016YFD0600703-1); 江苏省研究生科研与实践创新计划(KYCX17_0841)。
作者简介:胡涛平,男,副教授,研究方向为木材物理学。通信作者:喻孜,男,副教授。E-mail: ziyu_njfu@163.com
更新日期/Last Update: 2019-07-10