[1]岳孔,宋旭磊,程秀才,等.杉木胶合木湿应力研究[J].林业工程学报,2019,4(04):35-40.[doi:10.13360/j.issn.2096-1359.2019.04.005]
 YUE Kong,SONG Xulei,CHENG Xiucai,et al.Study on moisture stresses in Chinese fir glued laminated timber[J].Journal of Forestry Engineering,2019,4(04):35-40.[doi:10.13360/j.issn.2096-1359.2019.04.005]
点击复制

杉木胶合木湿应力研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
35-40
栏目:
木材科学与技术
出版日期:
2019-07-09

文章信息/Info

Title:
Study on moisture stresses in Chinese fir glued laminated timber
文章编号:
2096-1359(2019)04-0035-06
作者:
岳孔1宋旭磊1程秀才2赖延军1贾翀3陆伟东1刘伟庆1
1.南京工业大学土木工程学院,南京 211800; 2.南京市产品质量监督检验院,南京 210019; 3.南京林业大学材料科学与工程学院,南京 210037
Author(s):
YUE Kong1 SONG Xulei1 CHENG Xiucai2 LAI Yanjun1 JIA Chong3 LU Weidong1 LIU Weiqing1
1.College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China; 2.Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; 3.College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
杉木 胶合木 湿应力 平衡含水率 微观构造
Keywords:
Chinese fir glued laminated timber moisture stress equilibrium moisture content microstructure
分类号:
TU366
DOI:
10.13360/j.issn.2096-1359.2019.04.005
文献标志码:
A
摘要:
为揭示环境湿度变化引起的木材含水率非均匀性分布对胶合木构件内部湿应力的影响规律,从材料层面测试了变湿度条件下290个国产杉木木材的平衡含水率,以及横纹径向和横纹弦向干缩性、湿胀性、水分扩散系数、抗拉强度和弹性模量等物理力学性能参数,并从理论层面利用有限元模拟分析周期性变湿度条件下层板厚度对杉木胶合木湿应力的影响。研究结果表明:利用Nelson方程能够较好地拟合变湿度中杉木的平衡含水率; 杉木横纹径向干缩和湿胀性均小于横纹弦向,横纹径向水分扩散系数、抗拉强度和弹性模量均高于横纹弦向,这决定于横纹径向排列的木射线以及管胞径面壁上大量纹孔导致的实质物质减少的微观构造; 减小层板厚度有助于降低胶合木湿应力,当层板厚度由40 mm降至20 mm时,构件内部最大湿应力降低19.32%,但其最大值仍高于木材横纹抗拉强度,湿应力的降低程度不足以避免构件的横纹开裂; 木结构工程设计和应用中必须考虑其他有效的方法减小湿应力以避免木材横纹开裂。
Abstract:
It is well known that stresses caused by different moisture contents of wood affect the strength and stiffness, which influences the loading capability and durability of wood components in wooden structures.The influence of non-uniformly distributing moisture content of wood caused by varying relative humidity in the surrounding environment on moisture stress in glued laminated timber was examined and analyzed by the experimental tests and theoretical simulation in this study.A total of 290 Chinese fir wood specimens was tested to determine the influence of varying relative humidity on wood physical and mechanical properties, including equilibrium moisture content, perpendicular-to-grain tangential shrinkage, perpendicular-to-grain tangential swelling, perpendicular-to-grain radial shrinkage, perpendicular-to-grain radial swelling, perpendicular-to-grain tangential moisture diffusivity coefficient, perpendicular-to-grain radial moisture diffusivity coefficient, perpendicular-to-grain radial tensile strength, perpendicular-to-grain tangential tensile strength, perpendicular-to-grain radial modulus of elasticity, and perpendicular-to-grain tangential modulus of elasticity.The influence of laminae thickness on moisture stress in glued laminated timber manufactured with Chinese fir wood was simulated using the finite element method.The results showed that the equilibrium moisture content of Chinese fir in varying humidity could be simulated well using the conventional Nelson equation.The perpendicular-to-grain radial shrinkage and swelling properties of Chinese fir specimens were lower than the perpendicular-to-grain tangential ones, while the tangential moisture diffusivity coefficient, tensile strength and modulus of elasticity were higher than the radial ones, which were attributed to the microstructural characteristics, including wood rays and pits in radial cell walls.The reduction of laminae thickness led to a decrease in the moisture stress in glued laminated timber.When the thickness of laminate was reduced from 40 mm to 20 mm, the moisture stress decreased by 19.32%.However, the maximum moisture stress was still higher than the tensile strength, which might cause transverse fracture.Therefore, it was desired to use other additional effective methods in engineering timber design to reduce humidity stresses.

参考文献/References:

[1] JAKIEA S, BRATASZ , KOZOWSKI R.Numerical modelling of moisture movement and related stress field in lime wood subjected to changing climate conditions[J].Wood Science and Technology, 2008, 42(1): 21-37.DOI:10.1007/s00226-007-0138-5.
[2] JÖNSSON J, THELANDERSSON S.The effect of moisture gradients on tensile strength perpendicular to grain in glulam[J].Holz als Roh- und Werkstoff, 2003, 61(5): 342-348.DOI:10.1007/s00107-003-0405-6.
[3] 孔祥迪.木材横纹抗拉强度及其荷载持续时间效应研究[D].哈尔滨: 哈尔滨工业大学, 2016.
KONG X D.Investigation of the tension strength perpendicular to grain of wood and the duration of load effect[D].Harbin: Harbin Institute of Technology, 2016.
[4] SVENSSON S, TORATTI T.Mechanical response of wood perpendicular to grain when subjected to changes of humidity[J].Wood Science and Technology, 2002,36(2):145-156.DOI:10.1007/s00226-001-0130-4.
[5] JÖNSSON J, SVENSSON S.A contact free measurement method to determine internal stress states in glulam[J].Holzforschung, 2004, 58(2): 148-153.DOI:10.1515/HF.2004.022.
[6] LIU J X, WANG X M.Effect of drying temperature and relative humidity on contraction stress in wood[J].BioResources, 2016, 11(3): 6625-6638.DOI:10.15376/biores.11.3.6625-6638.
[7] 战剑锋, 顾继友, 艾沐野.白桦干燥过程的横纹干燥应力[J].东北林业大学学报, 2005,33(4):25-28.DOI: 10.3969/j.issn.1000-5382.2005.04.010
ZHAN J F, GU J Y, AI M Y.Transverse drying stress of white birch wood during drying[J].Journal of Northeast Forestry University, 2005, 33(4): 25-28.
[8] 程曦依, 李贤军, 黄琼涛, 等.木材干燥后养生期间含水率及应力变化特点[J].林业工程学报, 2016, 1(2): 38-43.DOI: 10.13360/j.issn.2096-1359.2016.02.007
CHENG X Y, LI X J, HUANG Q T, et al.The study of moisture content and inner stress variation of kiln-dried wood during equalization treatment[J].Journal of Forestry Engineering, 2016, 1(2): 38-43.
[9] GEREKE T, NIEMZ P.Moisture induced stresses in spruce cross laminates[J].Engineering Structures, 2010, 32(2): 600-606.DOI:10.1016/j.engstruct.2009.11.006.
[10] ANGST V, MALO K A.Moisture induced stresses in glulam cross sections during wetting exposures[J].Wood Science and Technology, 2013, 47(2): 227-241.DOI:10.1007/s00226-012-0493-8.
[11] 陈旭, 祝恩淳.胶合木梁中温度与湿度应力研究[J].工业建筑,2008(S1):862-866.DOI:10.13204/j.gyz2008.s1.146.
CHEN X, ZHU E C.Moisture and thermal stresses in glulam beams[J].Industrial Construction, 2008(S1): 862-866.
[12] LUIKOV A V.Systems of differential equations of heat and mass transfer in capillary-porous bodies[J].International Journal of Heat and Mass Transfer, 1975, 18(1): 1-14.DOI:10.1016/0017-9310(75)90002-2.
[13] 岳孔, 陈强, 贾翀, 等.工业化高温改性木材的力学性能[J].福建农林大学学报(自然科学版), 2018, 47(3): 361-366.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.03.015.
YUE K, CHEN Q, JIA C, et al.Mechanical properties of industrial heat-treated wood[J].Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2018, 47(3): 361-366.
[14] 李文军, 于志明, 张壁光.刨花对流干燥过程的传热传质研究动态[J].林业科学, 2006, 42(8): 116-120.DOI: 10.3321/j.issn:1001-7488.2006.08.019.
LI W J, YU Z M, ZHANG B G.Theory of heat and mass transfer during the process of wood particle drying with convection[J].Scientia Silvae Sinicae, 2006, 42(8): 116-120.
[15] J.R.威尔特.动量、热量和质量传递原理[M].北京: 化学工业出版社, 2005: 336-352.
WELTY J R.Fundamentals of momentum, heat, and mass transfer[M].Beijing: Chemical Industry Press, 2005: 336-352.
[16] DROIN-JOSSERAND A, TAVERDETJ L, VERGNAUD J M.Modelling the absorption and desorption of moisture by wood in an atmosphere of constant and programmed relative humidity[J].Wood Science and Technology, 1988, 22(4): 299-310.DOI:10.1007/BF00353320.
[17] 岳孔, 刘伟庆, 卢晓宁, 等.ACQ-D防腐处理对速生杨木力学性能和等温吸着特性的影响[J].南京林业大学学报(自然科学版), 2010, 34(2): 73-76.DOI: 10.3969/j.issn.1000-2006.2010.02.016.
YUE K, LIU W Q, LU X N, et al.Effect of modification with ACQ-D on mechanical and sorption isotherm performance of fast-growing poplar wood[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(2): 73-76.
[18] NELSON R M.A model for sorption of water vapor by cellulosic materials[J].Wood & Fiber Science, 1983, 15(1): 8-22.DOI:10.1007/BF00129437.
[19] NOACK D, SCHWAB E, BARTZ A.Characteristics for a judgment of the sorption and swelling behavior of wood[J].Wood Science and Technology, 1973, 7(3): 218-236.DOI:10.1007/BF00355552.
[20] 苗平.马尾松木材高温干燥的水分迁移和热量传递[D].南京: 南京林业大学, 2000.
MIAO P.Water movement and heat transfer during high temperature drying of Masson's pine[D].Nanjing: Nanjing Forestry University, 2000.

相似文献/References:

[1]陈代喜,吴友良,莫尚伟,等.广西杉木良种选育现状与对策[J].林业工程学报,2010,24(01):75.
 XU Shan,HAN Yaping,SONG Renbin,et al.The Introduction of New Hybrid Black Poplar Clones in the Dianchi Lake Area[J].Journal of Forestry Engineering,2010,24(04):75.
[2]谢汝根.杉木第三代种子园营建技术初探[J].林业工程学报,2010,24(01):15.
[3]潘标志.杉木林冠下虎杖不同栽培方式生长效果分析[J].林业工程学报,2009,23(03):55.
 PAN Biao zhi.Cultivation Patterns under Cunninghamia lanceolata Plantation[J].Journal of Forestry Engineering,2009,23(04):55.
[4]汪炎明.杉木萌芽林中套种刨花楠经营技术及生长效应[J].林业工程学报,2009,23(05):119.
 WANG Yan ming.Techniques for Interplanting Machilus pauhoi in Sprout Forest of Cunninghamia and Its Growth Effectiveness[J].Journal of Forestry Engineering,2009,23(04):119.
[5]沈捷,祝晨辰,徐进*,等.硼、钙离子对杉木花粉萌发和花粉管生长影响[J].林业工程学报,2010,24(06):57.
 SHEN Jie,ZHU Chen chen,XU Jin,et al.Effects of mineral elements on pollen germination and pollen tube growth of Cunninghamia lanceolate (Lamb.)Hook[J].Journal of Forestry Engineering,2010,24(04):57.
[6]刘红梅,王祖华,关庆伟*,等.间伐对杉木和马尾松人工林生长及植物多样性的影响[J].林业工程学报,2010,24(03):33.
 LIU Hong mei,WANG Zu hua,GUAN Qing wei,et al.The effects of thinning on the growth and plant diversity in Chinese fir and Pinus massoniana plantations[J].Journal of Forestry Engineering,2010,24(04):33.
[7]肖长汉.25年生优良杉木种源中间试验林分析[J].林业工程学报,2010,24(05):125.
[8]杨秀淦,郑会全*,胡德活,等.杉木无性系木材干缩性与吸水性的变异[J].林业工程学报,2012,26(01):33.
 YANG Xiu gan,ZHENG Hui quan,HU De huo,et al.Variation analysis on the wood shrinkage and hygroscopicity in Cunninghamia lanceolata clones[J].Journal of Forestry Engineering,2012,26(04):33.
[9]陈孝丑.杉木耐瘠薄速生优树子代测定及早期选择[J].林业工程学报,2013,27(04):55.
 CHEN Xiao chou.The progeny test of Chinese fir and the early stage selection for superior families with fastgrowing and leannessresistant to poor soil[J].Journal of Forestry Engineering,2013,27(04):55.
[10]徐阳,陈金慧,王颖,等.杉木SSR-PCR体系优化[J].林业工程学报,2014,28(01):15.
 XU Yang,CHEN Jinhui,WANG Ying,et al.Optimization on SSR-PCR reaction system of Chinese fir[J].Journal of Forestry Engineering,2014,28(04):15.

备注/Memo

备注/Memo:
收稿日期:2018-09-25 修回日期:2019-01-15
基金项目:国家重点研发计划(2017YFC0703501)。
作者简介:岳孔,男,副研究员,博士,研究方向为现代木结构。E-mail:yuekong@njtech.edu.cn
更新日期/Last Update: 2019-07-10