[1]姚瑶,姚文斌*,俞伟鹏,等.竹筒锥模受压开纤工艺研究[J].林业工程学报,2019,4(04):41-46.[doi:10.13360/j.issn.2096-1359.2019.04.006]
 YAO Yao,YAO Wenbin*,YU Weipeng,et al.Study on compression fiber-splitting technology of conical mold for bamboo culm[J].Journal of Forestry Engineering,2019,4(04):41-46.[doi:10.13360/j.issn.2096-1359.2019.04.006]
点击复制

竹筒锥模受压开纤工艺研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
41-46
栏目:
木材科学与技术
出版日期:
2019-07-09

文章信息/Info

Title:
Study on compression fiber-splitting technology of conical mold for bamboo culm
文章编号:
2096-1359(2019)04-0041-06
作者:
姚瑶1姚文斌2*俞伟鹏2张蔚2林茂阳1张逸挺1
1.浙江农林大学工程学院,杭州 311300; 2.浙江农林大学暨阳学院,浙江 诸暨 311800
Author(s):
YAO Yao1 YAO Wenbin2* YU Weipeng2 ZHANG Wei2 LIN Maoyang1 ZHANG Yiting1
1.School of Engineering, Zhejiang A&F University, Hangzhou 311300, China; 2.Jiyang College of Zhejiang A&F University, Zhuji 311800, Zhejiang, China
关键词:
竹筒 锥模成形 轴压开纤 开纤速率 竹纤维
Keywords:
bamboo culm conical mold axial pressure splitting splitting velocity bamboo fiber
分类号:
S781.9
DOI:
10.13360/j.issn.2096-1359.2019.04.006
文献标志码:
A
摘要:
以软化后的竹筒作为开纤对象,以竹原纤维得率、细度及纤维长度作为开纤效果的评价指标,研究了开纤速率和模具锥角对该方法开纤效果的影响规律。开纤试验表明:随着开纤速率的减小,竹原纤维得率逐渐提高,且在开纤速率为1 mm/min时趋于稳定,竹原纤维细度逐渐减小,纤维长度呈先增大后减小的变化趋势。当开纤速率为1 mm/min时,竹原纤维得率、细度、长度分别为30.49%,190.9 dtex和83.66 mm,且纤维细度和长度均匀性均较好。当模具锥角小于160°时,竹原纤维得率随着模具锥角增大而提高,在模具锥角为160°时,竹原纤维得率最高为30.63%; 当模具锥角超过160°时,开纤得率逐渐下降。随着模具锥角的增大,竹原纤维细度逐渐减小,纤维长度呈先增大后减小的变化趋势。当模具锥角为160°时,竹原纤维细度和长度分别为190.3 dtex和84.68 mm,且纤维细度及长度均匀性均较好。试验确定了竹筒锥模受压开纤方法最佳的工艺参数:开纤速率为1 mm/min,模具锥角为160°。在此工艺条件下,从竹筒试样提取的竹原纤维平均细度为190 dtex,平均长度为84 mm,竹原纤维得率达30.5%,且竹原纤维细度及长度范围分布也较为均匀。竹筒锥模受压开纤工艺的研究为竹材实现整竹开纤的研究奠定了基础,有望进一步提高竹材的利用率,实现竹原纤维的高效率生产,对竹材资源可持续利用和绿色生态纤维、低碳经济的发展都具有重要的现实意义。
Abstract:
The softened bamboo culm was used as a fiber-splitting object.Taking the bamboo fiber's yield, fineness and length as the evaluation indexes of the splitting outcomes, the effects of splitting velocities and mold taper angles on the fiber-splitting outcomes of the method were studied.The results showed that as the velocity of fiber-splitting decreased, the yield of bamboo fiber increased gradually, and tended to be stable when the fiber-splitting velocity was 1 mm/min.The fineness of bamboo fiber gradually decreased, and the fiber length showed a trend of increase firstly and then decreased.When the fiber-splitting velocity was 1 mm/min, the bamboo fiber's yield, fineness and length were 30.49%, 190.9 dtex and 83.66 mm, respectively, and the fiber fineness and length uniformity were much better than those of other velocities.The results also showed that when the taper angle of the mold was smaller than 160°, the yield of bamboo fiber increased with the increase of taper angle of the mold.When the taper angle of the mold was 160°, the maximum yield of bamboo fiber was up to 30.6%; when the mold taper angle exceeded 160°, the fiber yield began to decrease.With the increase of the taper angle of the mold, the fineness of the bamboo fiber gradually decreased, and the length of the fiber firstly increased and then decreased.When the taper angle of the mold was 160°, the fineness and length of the bamboo fiber were 190.3 dtex and 84.68 mm, respectively.The optimum technological parameters of the bamboo conical mold under compression were that the splitting velocity and mold taper angle were 1 mm/min and 160°, respectively.Under this process condition, the bamboo fiber extracted from the bamboo culm sample had an average fineness of 190 dtex, an average length of 84 mm, and the bamboo fiber yield of 30.5%.The distribution of fineness and length of bamboo fiber were also more uniform.This research provided the foundation for the future research on the realization of whole bamboo fiber-splitting.It is expected to improve the utilization rate of bamboo and achieve high-efficiency production of bamboo fiber.It has important practical significance for the sustainable utilization of bamboo resources, development of green ecological fibers and low-carbon economy.

参考文献/References:

[1] 郭豫吉, 邓首哲.竹纤维性能及发展展望[J].中国麻业科学, 2008, 30(6): 321-325.DOI: 10.3969/j.issn.1671-3532.2008.06.008.
GUO Y J, DENG S Z.Bamboo fiber properties and the prospect of its market[J].Plant Fiber Sciences in China, 2008, 30(6): 321-325.
[2] 王戈, 王越平, 程海涛, 等.我国纺织用竹纤维的研究与开发[J].木材工业, 2010, 24(4): 18-21.DOI:10.3969/j.issn.1001-8654.2010.04.006.
WANG G, WANG Y P, CHENG H T, et al.Research and development of bamboo fiber for textiles applications in China[J].China Wood Industry, 2010, 24(4): 18-21.
[3] 陈复明, 王戈, 程海涛, 等.新型竹纤维复合材料的研发[J].东北林业大学学报, 2016, 44(2): 80-85.DOI:10.3969/j.issn.1000-5382.2016.02.019.
CHEN F M, WANG G, CHENG H T, et al.Development of advanced bamboo fiber based composites material[J].Journal of Northeast Forestry University, 2016, 44(2): 80-85.
[4] 王春红, 刘胜凯.碱处理对竹纤维及竹纤维增强聚丙烯复合材料性能的影响[J].复合材料学报, 2015, 32(3): 683-690.DOI:10.13801/j.cnki.fhclxb.20141105.003.
WANG C H, LIU S K.Effects of alkali treatment on properties of bamboo fiber and bamboo fiber reinforced polypropylene composites[J].Acta Materiae Compositae Sinica, 2015, 32(3): 683-690.
[5] 张蔚, 姚文斌, 李文彬.竹纤维加工技术的研究进展[J].农业工程学报, 2008, 24(10): 308-312.DOI:10.3321/j.issn.1002-6819.2008.10.062.
ZHANG W, YAO W B, LI W B.Research and development of technology for processing bamboo fiber[J].Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 308-312.
[6] 张蔚, 姚文斌, 李文彬.梳解法制备竹纤维的力学模型[J].农业机械学报, 2010, 41(9): 66-69, 117.DOI:10.3969/j.issn.1000-1298.2010.09.013.
ZHANG W, YAO W B, LI W B.Mechanical model of processing bamboo fiber with combing method[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 66-69, 117.
[7] 高路.物理法竹材分离成纤机理研究及工艺优化[D].北京: 北京服装学院, 2010.
GAO L.Studies on mechanism of bamboo separating into fiber and process optimization by physical method[D].Beijing: Beijing Institute of Clothing Technology, 2010.
[8] 浙江农林大学暨阳学院.竹筒锥模开纤机:207130377U[P].2018-03-23.
Jiyang College of Zhejiang A&F University.Bamboo culm conical mold opener:207130377U[P].2018-03-23.
[9] 黄早文, 俞彦勤.轴压外翻管通用模[J].金属成形工艺, 1994, 12(3):134-136.
HUANG Z W, YU Y Q.Outer inversion tube universal die with axial pressure[J].Metal Forming Technology, 1994, 12(3): 134-136.
[10] 宋克飞.翻管工艺的理论与实验研究[D].重庆: 重庆大学, 2008.
SONG K F.Experimental and theoretical investigation of external inversion of tubes[D].Chongqing: Chongqing University, 2008.
[11] 沈亮亮.竹材密实化及其密实机理的研究[D].合肥: 安徽农业大学, 2007.
SHEN L L.Studies on the compressive mechanism and compression of bamboo[D].Hefei: Anhui Agricultural University, 2007.
[12] 罗云华, 黄早文, 张祥林.管材向外翻卷变形机理的研究[J].锻压技术, 2003, 28(5): 54-57.DOI:10.3969/j.issn.1000-3940.2003.05.018.
LUO Y H, HUANG Z W, ZHANG X L.Study on deforming mechanism of circluar tube outside inversion under pressed axially[J].Forging & Stamping Technology, 2003, 28(5): 54-57.
[13] 陈静芬.基于弹塑性损伤本构模型的复合材料层合板破坏荷载预测[J].复合材料学报, 2017, 34(4): 773-785.DOI:10.13801/j.cnki.fhclxb.20160721.001.
CHEN J F.Failure loads prediction of composite laminates using a combined elastoplastic damage model[J].Acta Materiae Compositae Sinica, 2017, 34(4): 773-785.
[14] 李晖, 朱一辛, 杨志斌, 等.我国竹材微观构造及竹纤维应用研究综述[J].林业科技开发, 2013, 27(3): 1-5.DOI: 10.3969/j.issn.1000-8101.2013.03.001.
LI H, ZHU Y X, YANG Z B, et al.Review on bamboo microscopic structure and bamboo fiber application in China[J].China Forestry Science and Technology, 2013, 27(3): 1-5.

备注/Memo

备注/Memo:
收稿日期:2018-09-11 修回日期:2018-10-25
基金项目:浙江省自然科学基金(LY16C160012); 浙江省公益性项目(2017C32067)。
作者简介:姚瑶,男,研究方向为竹纤维制备及应用。通信作者:姚文斌,男,教授。E-mail: wenbin925@sina.com
更新日期/Last Update: 2019-07-10