[1]李艳萍,李立君*,欧阳益斌,等.油茶抚育机爬坡性能试验[J].林业工程学报,2019,4(04):113-119.[doi:10.13360/j.issn.2096-1359.2019.04.017]
 LI Yanping,LI Lijun*,OUYANG Yibin,et al.Experimental study on climbing performance of Camellia oleifera tending machine[J].Journal of Forestry Engineering,2019,4(04):113-119.[doi:10.13360/j.issn.2096-1359.2019.04.017]
点击复制

油茶抚育机爬坡性能试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
113-119
栏目:
装备与信息化
出版日期:
2019-07-09

文章信息/Info

Title:
Experimental study on climbing performance of Camellia oleifera tending machine
文章编号:
2096-1359(2019)04-0113-07
作者:
李艳萍李立君*欧阳益斌庞国友
中南林业科技大学机电工程学院,长沙 410004
Author(s):
LI Yanping LI Lijun* OUYANG YibinPANG Guoyou
Mechanical and Electrical Engineering Institute, Central South University of Forestry and Technology, Changsha 410004, China
关键词:
油茶抚育机 抚育机 爬坡性能 动力学仿真 设计
Keywords:
Camellia oleifera tending machine tending machine climbing performance dynamics simulation design
分类号:
S219.2
DOI:
10.13360/j.issn.2096-1359.2019.04.017
文献标志码:
A
摘要:
为了提高油茶林地的耕整管护水平,专门设计研制了一款适合南方丘陵地区使用的油茶抚育机。首先,介绍了油茶抚育机整体结构和相关参数; 构建油茶抚育机爬坡运动学方程,并对爬坡过程的稳定性进行分析; 基于RecurDyn动力学仿真软件搭建油茶抚育机的多体运动学模型,同时基于贝氏理论建立爬坡仿真的坡面,坡面坡度设定为30°; 开展油茶林地软地面工况下的爬坡运动学仿真。结合设计参数及仿真试验结果研制一台油茶抚育机样机,选择油茶抚育机重心高度和行驶速度为试验因素,进行油茶抚育机样机实地爬坡性能正交试验。结果表明:重心高度对油茶抚育机爬坡过程稳定性影响大,行驶速度的影响小。从实地试验数据可知,当油茶抚育机重心位置为420 mm,爬坡速度为1.5 m/s时,油茶抚育机爬坡过程最稳定,其俯仰角的平均值为18.7°。与同一条件下的仿真试验的结果相比,实地试验与仿真试验的吻合程度为93.1%,两者基本吻合,验证了油茶抚育机动力学模型的可行性。试验证明,所设计的油茶抚育机满足爬坡性能要求。
Abstract:
Camellia oleifera is one of the important cash crops in China.However, the current plantation of Camellia oleifera trees mainly relies on manual care, which has the drawbacks of low efficiency, high labor intensity, high production cost and unsatisfactory operation procedure.To address the above-mentioned drawbacks, a Camellia oleifera tending machine was designed in this study.Considering that the hilly forest working conditions of the tending machine, it was desired to develop the tending machine with good climbing performance.In this study, the whole structure and relative parameters of the Camellia oleifera tending machine was investigated.The 3d model of the incubator was developed with the 3d parametric software Inventor.The kinematics equation of the Camellia oleifera tending machine was established and the stability of the climbing process was analyzed.The multi-body kinematics model was constructed based on the crawler kit in the RecurDyn dynamics simulation software.The simulation model was established based on Bayes Theorem.The center of gravity height and driving speed of the Camellia oleifera tending machine were selected as the factors of simulation test to carry out the kinematics simulation of climbing slope under the condition of the camellia woodland soft ground.The simulation results were as follows: the stability of the climbing process of the Camellia oleifera tending machine tended to be stable with the decrease of gravity center.In the climbing process of the tending machine, the speed had the greatest influence in the acceleration process and the least influence in constant speed process on the stability of the tending machine.A prototype was made for testing, and two factors and three levels of orthogonal test were designed with the center of gravity height and driving speed as experimental factors.The field climbing performance orthogonal test of the prototype of the Camellia oleifera tending machine was conducted.The results showed that the height of the center of gravity had a great influence on the climbing stability of the tending machine, and the driving speed had a small influence.According to the field test data, when the center of gravity of the tending machine was 420 mm and the climbing speed was 1.5 m/s, the climbing process of the tending machine was the most stable.The average of the angle of pitch was 18.7°.Compared with the simulation test under the same condition, the field test and simulation test were 93.1% consistent.The experimental results were in good agreement with the simulation results.The feasibility of the mechanical model was verified.The designed Camellia oleifera tending machine can meet the requirements of climbing performance.

参考文献/References:

[1] 王子健,高自成,李立君,等.履带式双轴除草机的研制与试验[J].林业工程学报,2018,3(4):118-124.DOI:10.13360/j.issn.2096-1359.2018.04.020.
WANG Z J, GAO Z C, LI L J, et al.Development and experiment of crawler-type biaxial weeding machine[J].Journal of Forestry Engineering,2018,3(4):118-124.
[2] 唐炜,陈永忠,陈隆升,等.湖南省油茶产业发展现状与对策[J].绿色科技,2017(15):208-210.DOI:10.16663/j.cnki.lskj.2017.15.089.
TANG W, CHEN Y Z, CHEN L S, et al.Current situation and countermeasures of camellia oil industry in Hunan Province[J].Journal of Green Science and Technology, 2017(15):208-210.
[3] 郭新荣.土壤深松技术的应用研究[J].山西农业大学学报(自然科学版),2005, 25(1):74-77.DOI:10.13842/j.cnki.issn1671-8151.2005.01.020.
GUO X R.Application study on technique of the soil deep loosening[J].Journal of Shanxi Agricultural University, 2005, 25(1):74-77.
[4] 张敏,吴崇友,陈长林.立式旋耕机传动系统设计及旋刀运动分析[J].中国农机化学报,2013,34(1):66-69.DOI: 10.3969/j.issn.2095-5553.2013.01.016.
ZHANG M, WU C Y, CHEN C L.Drive system design and blade motion analysis of vertical rotary cultivator[J].Journal of Chinese Agricultural Mechanization, 2013,34(1):66-69.
[5] LAL R.Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment[J].Soil and Tillage Research, 1997, 43(1/2): 81-107.DOI:10.1016/s0167-1987(97)00036-6.
[6] DEHKORDI N S, GHOBADIAN B, MINAEI S.Effective parameters in water conservation using a modified subsoiler[J].JWSS-Isfahan University of Technology, 2001, 5(2): 211-223.DOI:10.5751/ES-04342-160406.
[7] 高中超,宋柏权,王翠玲,等.不同机械深耕的改土及促进作物生长和增产效果[J].农业工程学报,2018,34(12):79-86.DOI: CNKI:SUN:NYGU.0.2018-12-010.
GAO Z C, SONG B Q, WANG C L,et al.Soil amelioration by deep ploughing of different machineries and its effect on promoting crop growth and yield[J].Transactions of the Chinese Society of Agricultural Engineering, 2018,34(12):79-86.
[8] 郑侃,陈婉芝.深松机具研究现状与展望[J].江苏农业科学,2016,44(8):16-20.DOI:10.15889/j.issn.1002-1302.2016.08.004.
ZHENG K, CHEN W Z.Research status and prospect of deep pine machine tools[J].Jiangsu Agricultural Sciences, 2016,44(8):16-20.
[9] 周渝岚,王新利,赵琨.农业机械化发展对农业经济发展方式转变影响的实证研究[J].上海经济研究,2014(6):34-41.DOI:10.19626/j.cnki.cn31-1163/f.2014.06.003.
ZHOU Y L, WANG X L, ZHAO K.Empirical study on the influence of agricultural mechanization development on the transformation of agricultural economic development mode[J].Shanghai Journal of Economics,2014(6):34-41.
[10] 王锋,杨玲,谢守勇,等.一种三角履带式果园动力底盘的设计与研究[J].农机化研究,2019,41(5):91-96.DOI:10.13427/j.cnki.njyi.2019.05.017.
WANG F, YANG L, XIE S Y, et al.Design and research of a triangular track orchard power chassis[J].Journal of Agricultural Mechanization Research, 2019,41(5):91-96.
[11] REECE A R.Principles of soil-vehicle mechanics[J].Proceedings of the Institution of Mechanical Engineers: Automobile Division, 1965, 180(1): 45-66.DOI: 10.1243/PIME_AUTO_1965_180_009_02.
[12] 冯莉,邓兆军,马岩,等.履带-负载轮-地面耦合作用关系研究[J].林业工程学报,2017,2(4):115-120.DOI:10.13360/j.issn.2096-1359.2017.04.019.
FENG L, DENG Z J, MA Y, et al.Study on coupling relationship of track-load whell-ground[J].Journal of Forestry Engineering,2017,2(4):115-120.
[13] 谢欢,王红岩,郝丙飞,等.履带车辆动力学建模及模型试验验证[J].农业装备与车辆工程,2018,56(6):44-47.DOI:10.3969/j.issn.1673-3142.2018.06.011.
XIE H, WANG H Y, HAO B F, et al.Dynamic modeling and model test verification of speed tracked vehicles[J].Agricultural Equipment & Vehicle Engineering,2018,56(6):44-47.
[14] 欧阳益斌,李立君,汤刚车,等.油茶林抚育机履带底盘设计与试验研究[J].西北林学院学报,2018,33(2):252-256.DOI: 10.3969/j.issn.1001-7461.2018.02.41.
OUYANG Y B, LI L J, TANG G C, et al.Design and experimental research on crawler chassis of oil tea plantation tending machine[J].Journal of Northwest Forestry University,2018,33(2):252-256.
[15] 马彪,万耀青,钱士文.履带车辆最小滚动阻力系数fmin和行动部分效率ηx分析[J].兵工学报(坦克装甲车与发动机分册),1999(1):44-48.DOI:10.16599/j.cnki.1009-4687.1999.01.008.
MA B,WAN Y Q, QIAN S W,et al.Analysis of minimum rolling resistance factor fmin and moving system efficiency ηx of tracked vehicles[J].Vehicle & Power Technology,1999(1):44-48.
[16] 李波,陈慧宝,徐解民,等.轮-履带式移动车辆的力学性能研究[J].机床与液压,2005(5):42-43.DOI: 10.3969/j.issn.1001-3881.2005.05.016.
LI B, CHEN H B, XU J M, et al.Study on mechanical properties of wheel-track mobile vehicle[J].Machine Tool & Hydraulics, 2005(5):42-43.
[17] 葛晓雯,侯捷建,王立海.集材机可更换三角形履带跨越壕沟动力学仿真分析[J].林业工程学报,2016,1(1):111-117.DOI:10.13360/j.issn.2096-1359.2016.01.021.
GE X W, HOU J J, WANG L H.Trench-crossing dynamic simulation of the replaceable triangular track of skidder[J].Journal of Forestry Engineering,2016,1(1):111-117.
[18] 蒲宏武,邢俊文,孟祥政,等.基于RecurDyn的履带式三角形车轮通过性仿真研究[J].湖南理工学院学报(自然科学版),2013,26(2):24-27.DOI: 10.3969/j.issn.1672-5298.2013.02.007.
PU H W, XING J W, MENG X Z, et al.Passing ability simulation study for tracked triangular wheeled vehicle based on RecurDyn[J].Journal of Hunan Institute of Science and Technology(Natural Sciences),2013,26(2):24-27.
[19] YANG H F, LV X R.Dynamic simulation of small crawler chassis turning based on RecurDyn[J].Advanced Materials Research, 2013,774-776:195-198.DOI: 10.4028/www.scientific.net/AMR.774-776.195.
[20] LYU X L, LYU X R, SHI X J, et al.Experimental verification of the steering performance of all-hydraulic crawler chassis[J].Engineering Transactions, 2018, 66(4): 427-442.
[21] 马星国,陈媛媛,刘兴婷,等.基于多体动力学仿真的履带车辆转向性能分析[J].机械设计,2012(6):52-57.DOI: 10.3969/j.issn.1001-2354.2012.06.013.
MA X G, CHEN Y Y, LIU X T, et al.Steering performance analysis of tracked vehicles based on multi-body dynamics simulation[J].Journal of Machine Design,2012(6):52-57.
[22] DAI Y, LIU S.Multi-rigid-body modeling and simulation analysis for tracked vehicle [J].Computer Simulation, 2009, 26(3): 281-285.DOI: 10.1115/MNHMT2009-18287.
[23] 李军,周靖凯,李强.基于贝克理论履带沉陷性能研究[J].农业装备与车辆工程,2012(2):14-16.DOI: 10.3969/j.issn.1673-3142.2012.02.005.
LI J, ZHOU J K, LI Q.Study on sinkage of track based on the Bekker Theory[J].Agricultural Equipment & Vehicle Engineering,2012(2):14-16.

备注/Memo

备注/Memo:
收稿日期:2018-09-27 修回日期:2019-05-03
基金项目:湖南省科技计划重点研发项目(2016NK2142); 湖南省高校科技创新团队资助项目(2014207)。
作者简介:李艳萍,女,研究方向为林业机械。通信作者:李立君,女,教授。E-mail:junlili122@163.com
更新日期/Last Update: 2019-07-10