[1]蒋利群,沈隽*,赵政,等.纳米TiO2和ZnO改性水性漆的漆膜性能及其VOCs研究[J].林业工程学报,2019,4(04):148-155.[doi:10.13360/j.issn.2096-1359.2019.04.022]
 JIANG Liqun,SHEN Jun*,ZHAO Zheng,et al.Study on film properties and VOCs of nano- TiO2 and ZnO modified waterborne paints[J].Journal of Forestry Engineering,2019,4(04):148-155.[doi:10.13360/j.issn.2096-1359.2019.04.022]
点击复制

纳米TiO2和ZnO改性水性漆的漆膜性能及其VOCs研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年04期
页码:
148-155
栏目:
家具制造工程
出版日期:
2019-07-09

文章信息/Info

Title:
Study on film properties and VOCs of nano- TiO2 and ZnO modified waterborne paints
文章编号:
2096-1359(2019)04-0148-08
作者:
蒋利群1沈隽1*赵政1董华君12李永博1
1.东北林业大学材料科学与工程学院,哈尔滨 150040; 2.哈尔滨商业大学,哈尔滨 150028
Author(s):
JIANG Liqun1 SHEN Jun1* ZHAO Zheng1 DONG Huajun12 LI Yongbo1
1.School of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; 2.Harbin University of Commerce, Harbin 150028, China
关键词:
纳米材料 水性漆 漆膜性能 挥发性有机化合物 有害物质
Keywords:
nanomaterial waterborne paint film property volatile organic compound harmful substance
分类号:
S781.61; TQ63
DOI:
10.13360/j.issn.2096-1359.2019.04.022
文献标志码:
A
摘要:
为了探究不同添加量的纳米TiO2和纳米ZnO对丙烯酸水性漆漆膜性能以及挥发性有机化合物(VOCs)成分的影响,向丙烯酸水性漆中分别添加占涂料成膜物质质量0.05%,0.10%,0.30%,0.50%的纳米TiO2以及纳米ZnO制备改性水性漆。将制备的改性水性漆均匀涂在基材上,按照相关的国家标准测试改性水性漆的漆膜耐磨性、附着力、硬度,并利用15 L小型环境舱采集改性水性漆释放的挥发性有机化合物,采用气相色谱-质谱联用仪分析VOCs的主要成分、主要危害物质。结果表明:随着纳米氧化物添加量的增大,水性漆漆膜耐磨性逐渐增加。在加入等量纳米氧化物的情况下,纳米ZnO对水性漆耐磨性的增强作用更明显; 纳米TiO2和ZnO在一定程度上都能增强水性漆漆膜硬度以及附着力,但是这种增强作用是有限的,当加入量为0.30%时,漆膜硬度和附着力达到最大; 纳米材料主要通过增加挥发性有机化合物(芳香烃类、酯类)的浓度来增加总体VOC的浓度; 丙烯酸水性漆释放的主要危害物质为苯、甲苯,次要危害物质为二甲苯、邻苯二甲酸二丁酯。
Abstract:
Nanomaterials have been used more and more widely in the field of coating modification, among which nano- TiO2 and ZnO are commonly used.In order to explore the effects of different addition amounts of nano- TiO2 and ZnO on the performance of acrylic waterborne paint film and volatile organic compounds(VOCs), using the ultrasonic blending method, the modified waterborne paint was prepared by adding 0.05%, 0.10%, 0.30% and 0.50% nano- TiO2 and ZnO of the film-forming substance mass to the acrylic waterborne paint.The prepared modified waterborne paint was uniformly coated on the substrate, and the abrasion resistance, adhesion and hardness of the modified waterborne paint were tested according to relevant national standards.The volatile organic compounds released by the modified waterborne paint were collected by a 15 L small environmental chamber, and the main components and main harmful substances of VOCs were analyzed by gas chromatography/mass spectrometer.The results showed that the nano-oxide had a significant effect on the performance of waterborne paint film by changing the molecular force between waterborne paint and substrate.The large specific surface area of nanoparticles enhanced the interaction between waterborne paint coatings and substrates.However, when the nanoparticles were excessive, the agglomeration of nanoparticles would lead to structural defects when the waterborne paint solidified and reduced the bonding strength between the paint film and the substrate.As the added nano-oxides increased, the wear resistance of the waterborne paint film gradually enhanced.In the case of adding the same amount of nano-oxide, nano-ZnO had the most obvious effect on the abrasion resistance of waterborne paint; nano- TiO2 and ZnO could enhance the hardness and adhesion of waterborne paint film to a certain extent, but this reinforcement was limited.When the addition amount was 0.30%, the hardness and adhesion of the paint film were maximized; nanomaterials increased the concentration of total VOC by increasing the concentration of main volatile organic compounds, such as aromatic hydrocarbons and esters, and by increasing the concentration of monomer VOC, such as benzene, toluene, ethylbenzene, p-xylene, butyl acetate, acetic acid, 1-methylpropyl ester, etc.According to the maximum allowable concentration of VOCs defined by the California Office of Environmental Health Hazard Assessment(OEHHA), the main harmful substances released by acrylic waterborne paint were benzene, toluene, and the secondary hazardous substance were xylene, dibutyl phthalate.

参考文献/References:

[1] 张翠, 吴燕, 张洋, 等.纳米二氧化硅对涂料的改性研究现状[J].林业机械与木工设备, 2013, 41(8): 16-22.DOI: 10.3969/j.issn.2095-2953.2013.08.004.
ZHANG C, WU Y, ZHANG Y, et al.Research status of nanometer silicon dioxide's modification of coatings[J].Forestry Machinery & Woodworking Equipment, 2013, 41(8): 16-22.
[2] 董峰亮, 李栋梁, 邹炳锁, 等.纳米材料及其技术在涂料中的应用[J].合成材料老化与应用, 2002, 31(3): 19-22.DOI: 10.3969/j.issn.1671-5381.2002.03.006.
DONG F L, LI D L, ZOU B S, et al.The application of nanometer materials and nanotechnology in coating[J].Synthetic Materials Aging and Application, 2002, 31(3): 19-22.
[3] 翁凌, 倪卓, 李晓萍, 等.预分散纳米TiO2改性涂料的制备和性能表征[J].哈尔滨理工大学学报, 2004, 9(5): 114-117.DOI: 10.3969/j.issn.1007-2683.2004.05.036.
WENG L, NI Z, LI X P, et al.Preparation and characteristics of paint modified by adding pre-dispersed nano-TiO2 particles[J].Journal of Harbin University of Science and Technology, 2004, 9(5): 114-117.
[4] 黄碧君, 张力.纳米材料及纳米技术在涂料中的应用[J].上海涂料, 2005, 43(11): 25-28.DOI: 10.3969/j.issn.1009-1696.2005.11.009.
HUANG B J, ZHANG L.Application of nano material and nano-technology in paint and coatings[J].Shanghai Coatings, 2005, 43(11): 25-28.
[5] 靳政, 刘博, 段武彪.纳米二氧化钛光催化材料的研究进展[J].现代化工, 2015, 35(8): 36-40, 42.DOI: 10.16606/j.cnki.issn.0253-4320.2015.08.011.
JIN Z, LIU B, DUAN W B.Progress of nano-titanium dioxide photocatalytic materials[J].Modern Chemical Industry, 2015, 35(8): 36-40, 42.
[6] 李永博, 沈隽, 蒋利群, 等.纳米TiO2对涂料性能及VOCs释放的影响[J].东北林业大学学报, 2018, 46(8): 97-101.DOI: 10.13759/j.cnki.dlxb.2018.08.018.
LI Y B, SHEN J, JIANG L Q, et al.Effect of nano-TiO2 on coating performance and VOCs release[J].Journal of Northeast Forestry University, 2018, 46(8): 97-101.
[7] 眭慧东, 闫勇, 胡晓雪, 等.新型纳米TiO2光触媒乳液的研究进展[J].化工新型材料, 2018, 46(3): 23-26.
SUI H D, YAN Y, HU X X, et al.Research progress of novel nano TiO2 photocatalyst emulsion[J].New Chemical Materials, 2018, 46(3): 23-26.
[8] 鲍艳, 陈颖.无机纳米材料改性聚氨酯防腐涂料的研究进展[J].涂料工业, 2017, 47(8): 62-69.
BAO Y, CHEN Y.Research progress in inorganic nanomaterial modified polyurethane anticorrosive coatings[J].Paint & Coatings Industry, 2017, 47(8): 62-69.
[9] MONTESINOS R, REYNOSO R, ÁLVAREZ F, et al.Assessment of novel water-borne coatings obtained from composite latex particles and reinforced with TiO2 nanotubes[J].Polymer-Plastics Technology and Engineering, 2015, 54(7): 730-740.DOI: 10.1080/03602559.2014.974273.
[10] CHEN X D, WANG Z, LIAO Z F, et al.Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane[J].Polymer Testing, 2007, 26(2): 202-208.DOI: 10.1016/j.polymertesting.2006.10.002.
[11] SAHA S, KOCAEFE D, KRAUSE C, et al.Effect of titania and zinc oxide particles on acrylic polyurethane coating performance[J].Progress in Organic Coatings, 2011, 70(4): 170-177.DOI: 10.1016/j.porgcoat.2010.09.021.
[12] CRISTEA M V, RIEDL B, BLANCHET P.Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood[J].Progress in Organic Coatings, 2011, 72(4): 755-762.DOI: 10.1016/j.porgcoat.2011.08.007.
[13] 闫小星, 蔡云婷, 郭伟娟, 等.脲醛@环氧树脂微胶囊的制备及对水性木器涂料的影响[J].林业工程学报, 2019, 4(1): 160-164.DOI: 10.13360/j.issn.2096-1359.2019.01.024.
YAN X X, CAI Y T, GUO W J, et al.Preparation of urea-formaldehyde@epoxy resin microcapsule and its effect on waterborne wood coatings[J].Journal of Forestry Engineering, 2019, 4(1): 160-164.
[14] 闫小星, 钱星雨, 张岱远, 等.环氧生漆在水曲柳木材上的涂饰工艺研究[J].林产工业, 2018, 45(1): 27-29, 52.DOI:10.19531/j.issn.1001-5299.201801006.
YAN X X, QIAN X Y, ZHANG D Y, et al.Research on coating process of epoxy natural lacquer on ash[J].China Forest Products Industry, 2018, 45(1): 27-29,52.
[15] 李永博.杨木强化材饰面性能研究[D].哈尔滨:东北林业大学, 2018.
LI Y B.Study on the decorative properties of strengthened poplar wood[D].Harbin: Northeast Forestry University, 2018.
[16] MIRABEDINI S M, MOHSENI M, PAZOKIFARD S, et al.Effect of TiO2 on the mechanical and adhesion properties of RTV silicone elastomer coatings[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 80-86.DOI: 10.1016/j.colsurfa.2007.09.044.

相似文献/References:

[1]丁婷婷,李倩,金贞福*,等.纳米化竹粉/羧甲基纤维素复合膜材料制备及性能研究[J].林业工程学报,2017,2(05):90.[doi:10.13360/j.issn.2096-1359.2017.05.016]
 DING Tingting,LI Qian,JIN Zhenfu*,et al.Preparation and properties of bamboo nano powder/carboxymethyl cellulose composite film[J].Journal of Forestry Engineering,2017,2(04):90.[doi:10.13360/j.issn.2096-1359.2017.05.016]

备注/Memo

备注/Memo:
收稿日期:2018-10-14 修回日期:2019-03-06
基金项目:“十三五”国家重点研发计划(2016YFD0600706)。
作者简介:蒋利群,男,研究方向为人造板生产工艺。通信作者:沈隽,男,教授。E-mail:shenjunr@126.com
更新日期/Last Update: 2019-07-10