[1]宋国勇.“木质素优先”策略下林木生物质组分催化分离与转化研究进展[J].林业工程学报,2019,4(05):1-10.[doi:10.13360/j.issn.2096-1359.2019.05.001]
 SONG Guoyong.The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy[J].Journal of Forestry Engineering,2019,4(05):1-10.[doi:10.13360/j.issn.2096-1359.2019.05.001]
点击复制

“木质素优先”策略下林木生物质组分催化分离与转化研究进展()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
1-10
栏目:
专论综述
出版日期:
2019-09-16

文章信息/Info

Title:
The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy
文章编号:
2096-1359(2019)05-0001-10
作者:
宋国勇
北京林业大学材料科学与技术学院,林木生物质化学北京市重点实验室,北京 100083
Author(s):
SONG Guoyong
Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
关键词:
生物质 木质素 还原催化分离 碳水化合物 单体苯酚
Keywords:
biomass lignin reductive catalytic fractionation carbohydrate monomeric phenols
分类号:
TQ351; TQ353
DOI:
10.13360/j.issn.2096-1359.2019.05.001
文献标志码:
A
摘要:
化石资源的过度消耗及其产生的环境污染问题驱动了生物质资源各组分转化为燃料、化学品及材料的发展。传统的生物精炼产业聚焦于碳水化合物的分离、纯化、转化与利用,木质素通常作为副产物,仅有少量转化为低附加值产品。木质素的高值化利用不仅可以为下游工业提供可再生的芳香类碳氢资源,同时可大幅提升当前生物精炼产业链的经济效益。近年来,一种基于“木质素优先”策略,即生物质原料在直接催化处理下优先完成木质素组分降解转化为单分子苯酚化合物,同时保留碳水化合物不参与反应,成为生物质组分分离、抗降解屏障破除及各组分高值化利用的新方案。介绍了国内外课题组在该领域取得的一些研究进展,并从苯酚单体产率、选择性、木质素脱除率及碳水化合物保留率等主要参数入手,详细讨论了催化剂、溶剂及生物质原料等对“木质素优先”策略的影响。同时对该策略存在的问题及解决方案进行了分析,展望了未来的发展方向,以期为木质生物质的高效转化利用提供依据和参考。
Abstract:
A large amount of bio-refinery research efforts have been made for the utilization of renewable biomass to produce fuels, chemicals and bio-materials in response to the environmental concerns and energy security.Lignocellulosic biomass is composed by three constitutive components, i.e., cellulose, hemicellulose and lignin.Current biorefineries have been geared towards optimal carbohydrate(cellulose and hemicellulose)valorization and biomass pretreatment(such as soda and kraft), aiming at the removal of lignin(and hemicellulose)component to obtain pure cellulose amenable to utilization.Under the harsh conditions, the reactive native lignin undergoes irreversible de-polymerization and re-condensation reactions to form the industry lignin, which is always recognized as a waste product due to its complexity of structure and low chemical reactivity.Lignin represents one of the few renewable sources of aromatic chemicals, which is biosynthesized in the plant cell wall through oxidative radical polymerization from primary monolignols, i.e., p-coumaryl alcohol(H), coniferyl alcohol(G), and sinapyl alcohol(S).The de-polymerization of lignin into monomeric phenols is suitable for downstream processing, which has become a standpoint of lignin valorization.In an attempt to utilize all components of biomass, motivated by both economic and ecologic incentives, the de-polymerization of lignin, which is combined in biomass components fractionation, has come into the spotlight.Recently, the “lignin first” reductive catalytic fractionation(RCF)of biomass became a new bio-refinery paradigm, where the biomass sawdust was treated with a heterogeneous metal catalyst directly.In this process, the native lignin was fragmented into soluble phenolic monomers, dimers and oligomers preferentially through cleaving C—O bonds in β-O-4 units, next to leaving unreacted carbohydrate components as a solid fraction.Furthermore, the biomass recalcitrance would be broken during RCF, thus making of retained carbohydrate components were amenable to valorization via enzymatic hydrolysis and chemocatalytic conversion.It is great of interest and importance in RCF process to find proper balances between the lignin de-polymerization and(hemi)cellulose preservation, as well as the yield and the selectivity of resulted monomeric phenols.This review introduced the recent progress on RCF, and discussed the influences of catalyst, solvent and biomass feedstock in terms of yield and selectivity of phenolic monomers, degree of delignification and retention of carbohydrate pulp.This review also described current problems, potential solutions, as well as future perspectives of lignin first fractionation of biomass, which may provide the basis and reference for the efficient utilization of lignocellulosic biomass.

参考文献/References:

[1] ZHAO X, ZHOU H, SIKARWAR V S, et al.Biomass-based chemical looping technologies: the good, the bad and the future[J].Energy Environmental Science, 2017, 10(9): 1885-1910.DOI: 10.1039/C6EE03718F.
[2] TUCK C O, PÉREZ E, HORVÁTH I T, et al.Valorization of biomass: deriving more value from waste[J].Science, 2012, 337(6095): 695-699.DOI: 10.1126/science.1218930.
[3] SOMERVILLE C, YOUNGS H, TAYLOR C, et al.Feedstocks for lignocellulosic biofuels[J].Science, 2010, 329(5993): 790-792.DOI: 10.1126/science.1189268.
[4] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.Lignin valorization: improving lignin processing in the biorefinery[J].Science, 2014, 344(6185): 1246843.DOI: 10.1126/science.1246843.
[5] RINALDI R, JASTRZEBSKI R, CLOUGH M T, et al.Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J].Angewandte Chemie International Edition, 2016, 55(29): 8164-8215.DOI: 10.1002/anie.201510351.
[6] CONSTANT S, WIENK H L J, FRISSEN A E, et al.New insights into the structure and composition of technical lignins: a comparative characterisation study[J].Green Chemistry, 2016, 18(9): 2651-2665.DOI: 10.1039/C5GC03043A.
[7] LI C, ZHAO X, WANG A, et al.Catalytic transformation of lignin for the production of chemicals and fuels[J].Chem Reviews, 2015, 115(21): 11559-11624.DOI: 10.1021/acs.chemrev.5b00155.
[8] SUN Z, FRIDRICH B, DE SANTI A, et al.Bright side of lignin depolymerization: toward new platform chemicals[J].Chem Reviews, 2018, 118(2): 614-678.DOI: 10.1021/acs.chemrev.7b00588.
[9] GALKIN M V, SAMEC J S M.Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery[J].ChemSusChem, 2016, 9(13): 1544-1558.DOI: 10.1002/cssc.201600237.
[10] CAO L, YU I K M, LIU Y, et al.Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects[J].Bioresource Technology, 2018, 269: 465-475.DOI: 10.1016/j.biortech.2018.08.065.
[11] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al.Lignin-first biomass fractionation: the advent of active stabilisation strategies[J].Energy Environmental Science, 2017, 10(7): 1551-1557.DOI: 10.1039/c7ee01298e.
[12] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al.Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J].Chemical Society Reviews, 2018, 47(3): 852-908.DOI: 10.1039/c7cs00566k.
[13] HARRIS D, DEBOLT S.Synthesis, regulation and utilization of lignocellulosic biomass[J].Plant Biotechnology Journal, 2010, 8(3): 244-262.DOI: 10.1111/j.1467-7652.2009.00481.x.
[14] BOERJAN W, RALPH J, BAUCHER M.Lignin biosynthesis[J].Annual Review Plant Biology, 2003, 54(1): 519-546.DOI: 10.1146/annurev.arplant.54.031902.134938.
[15] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al.Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J].Energy Environmental Science, 2015, 8(6): 1748-1763.DOI: 10.1039/c5ee00204d.
[16] LUTERBACHER J S, AZARPIRA A, MOTAGAMWALA A H, et al.Lignin monomer production integrated into the γ-valerolactone sugar platform[J].Energy Environmental Science, 2015, 8(9): 2657-2663.DOI: 10.1039/C5EE01322D.
[17] XIAO L P, WANG S, LI H, et al.Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J].ACS Catalysis, 2017, 7(11): 7535-7542.DOI: 10.1021/acscatal.7b02563.
[18] SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, et al.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J].Science, 2016, 354(6310): 329-333.DOI: 10.1126/science.aaf7810.
[19] YAN N, ZHAO C, DYSON P J, et al.Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J].ChemSusChem, 2008, 1(7): 626-629.DOI: 10.1002/cssc.200800080.
[20] FEGHALI E, CARROT G, THUÉRY P, et al.Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation[J].Energy Environmental Science, 2015, 8(9): 2734-2743.DOI: 10.1039/c5ee01304f.
[21] SONG Q, WANG F, CAI J, et al.Lignin depolymerization(LDP)in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J].Energy Environmental Science, 2013, 6(3): 994-1007.DOI: 10.1039/c2ee23741e.
[22] VAN DEN BOSCH S, RENDERS T, KENNIS S, et al.Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3 catalyst pellets during lignin-first fractionation[J].Green Chemistry, 2017, 19(14): 3313-3326.DOI: 10.1039/c7gc01324h.
[23] LI C, ZHENG M, WANG A, et al.One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J].Energy Environmental Science, 2012, 5(4): 6383-6390.DOI: 10.1039/c1ee02684d.
[24] PARSELL T, YOHE S, DEGENSTEIN J, et al.A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J].Green Chemistry, 2015, 17(3): 1492-1499.DOI: 10.1039/C4GC01911C.
[25] VAN DEN BOSCH S, SCHUTYSER W, KOELEWIJN S F, et al.Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J].Chemical Communications, 2015, 51(67): 13158-13161.DOI: 10.1039/c5cc04025f.
[26] FURIKADO I, MIYAZAWA T, KOSO S, et al.Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen[J].Green Chemistry, 2007, 9(6): 582-588.DOI: 10.1039/b614253b.
[27] GALKIN M V, SAMEC J S M.Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis[J].ChemSusChem, 2014, 7(8): 2154-2158.DOI: 10.1002/cssc.201402017.
[28] HUANG X, MORALES GONZALEZ O M, ZHU J, et al.Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis[J].Green Chemistry, 2017, 19(1): 175-187.DOI: 10.1039/c6gc02962k.
[29] RENDERS T, SCHUTYSER W, VAN DEN BOSCH S, et al.Influence of acidic(H3PO4)and alkaline(NaOH)additives on the catalytic reductive fractionation of lignocellulose[J].ACS Catalysis, 2016, 6(3): 2055-2066.DOI: 10.1021/acscatal.5b02906.
[30] CHEN J, LU F, SI X, et al.High yield production of natural phenolic alcohols from woody biomass using a nickel-based catalyst[J].ChemSusChem, 2016, 9(23): 3353-3360.DOI: 10.1002/cssc.201601273.
[31] ZHAI Y, LI C, XU G, et al.Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon[J].Green Chemistry, 2017, 19: 1895-1903.DOI: 10.1039/C7GC00149E.
[32] LIU X, LI H, XIAO L P, et al.Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst[J].Green Chemistry, 2019, 21(6): 1498-1504.DOI: 10.1039/C8GC03511C.
[33] MINAMI E, SAKA S.Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol[J].Journal of Wood Science, 2003, 49(1): 73-78.DOI: 10.1007/s100860300012.
[34] KUMANIAEV I, SUBBOTINA E, SÄVMARKER J, et al.Lignin depolymerization to monophenolic compounds in a flow-through system[J].Green Chemistry, 2017, 19(24): 5767-5771.DOI: 10.1039/C7GC02731A.
[35] CHOI J, SHIN K M, PARK H J, et al.Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin[J].Planta Medica, 2004, 70(11): 1027-1032.DOI: 10.1055/s-2004-832642.
[36] KÖNIG S, FEUSSNER K, KAEVER A, et al.Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum[J].New Phytologist, 2014, 202(3): 823-837.DOI: 10.1111/nph.12709.
[37] SUN J, LI H, XIAO L P, et al.Fragmentation of woody lignocellulose into primary monolignols and their derivatives[J].ACS Sustainable Chemistry and Engineering, 2019, 7(5): 4666-4674.DOI: 10.1021/acssuschemeng.8b04032.
[38] RAUTIAINEN S, DI FRANCESCO D, KATEA S N, et al.Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds[J].ChemSusChem, 2019, 12(2): 404-408.DOI: 10.1002/cssc.201802497.
[39] REICHARDT C.Solvatochromic dyes as solvent polarity indicators[J].Chemical Reviews, 1994, 94(8): 2319-2358.DOI: 10.1021/cr00032a005.
[40] SCHUTYSER W, VAN DEN BOSCH S, RENDERS T, et al.Influence of bio-based solvents on the catalytic reductive fractionation of birch wood[J].Green Chemistry, 2015, 17(11): 5035-5045.DOI: 10.1039/C5GC01442E.
[41] RUIZ H A, THOMSEN M H, TRAJANO H L.Hydrothermal processing in bioreneries[M].Switzerland: Springer, 2017.
[42] GALKIN M V, SMIT A T, SUBBOTINA E, et al.Hydrogen-free catalytic fractionation of woody biomass[J].ChemSusChem, 2016, 9(23): 3280-3287.DOI: 10.1002/cssc.201600648.
[43] BROSSE N, DUFOUR A, MENG X, et al.Miscanthus: a fast-growing crop for biofuels and chemicals production[J].Biofuels Bioproducts and Biorefining-Biofpr, 2012, 6(5): 580-598.DOI: 10.1002/bbb.1353.
[44] SUN R C, SUN X F, ZHANG S H.Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood[J].Journal of Agricultural Food Chemistry, 2001, 49(11): 5122-5129.DOI: 10.1021/jf010500r.
[45] RALPH J, HATFIELD R D, QUIDEAU S, et al.Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR[J].Journal of the American Chemical Society, 1994, 116(21): 9448-9456.DOI: 10.1021/ja00100a006.
[46] LUO H, KLEIN I M, JIANG Y, et al.Total utilization of miscanthus biomass, lignin and carbohydrates, using earth abundant nickel catalyst[J].ACS Sustainable Chemistry and Engineering, 2016, 4(4): 2316-2322.DOI: 10.1021/acssuschemeng.5b01776.
[47] ANDERSON E M, KATAHIRA R, REED M, et al.Reductive catalytic fractionation of corn stover lignin[J].ACS Sustainable Chemistry and Engineering, 2016, 4(12): 6940-6950.DOI: 10.1021/acssuschemeng.6b01858.
[48] ZHANG K, LI H, XIAO L P, et al.Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin[J].Bioresource Technology, 2019, 285:121335.DOI: 10.1016/j.biortech.2019.121335.
[49] WANG S, GAO W, LI H, et al.Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst[J].ChemSusChem, 2018, 11(13): 2114-2123.DOI: 10.1002/cssc.201800455.
[50] ANDERSON E M, STONE M L, KATAHIRA R, et al.Flowthrough reductive catalytic fractionation of biomass[J].Joule, 2017, 1(3): 613-622.DOI: 10.1016/j.joule.2017.10.004.
[51] ZHU G, QIU X, ZHAO Y, et al.Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols[J].Bioresource Technology, 2016, 218:718-722.DOI: 10.1016/j.biortech.2016.07.021.
[52] LI H, SONG G Y.Ru-catalyzed hydrogenolysis of lignin: base-dependent tunability of monomeric phenols and mechanistic study[J].ACS Catalysis, 2019, 4054-4064.DOI: 10.1038/s41929-018-0148-8.
[53] LOHR T L, LI Z, MARKS T J.Selective ether/ester C—O cleavage of an acetylated lignin model via tandem catalysis[J].ACS Catalysis, 2015, 5(11): 7004-7007.DOI: 10.1021/acscatal.5b01972.
[54] SUN Z, BOTTARI G, AFANASENKO A, et al.Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels[J].Nature Catalysis, 2018, 1(1): 82-92.DOI: 10.1038/s41929-017-0007-z.
[55] KLEIN I, MARCUM C, KENTTÄMAA H, et al.Mechanistic investigation of the Zn/Pd/C catalyzed cleavage and hydrodeoxygenation of lignin[J].Green Chemistry, 2016, 18(8): 2399-2405.DOI: 10.1039/C5GC01325A.
[56] WU X, FAN X, XIE S, et al.Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions[J].Nature Catalysis, 2018, 1(10): 772-780.DOI: 10.1038/s41929-018-0148-8.

相似文献/References:

[1]雷洪,杜官本*.生物质木材胶黏剂的研究进展[J].林业工程学报,2012,26(03):7.
[2]邹局春,郑志锋,张宏健,等.生物质苯酚液化产物在模塑材料中的应用[J].林业工程学报,2007,21(02):15.
[3]刘石彩,邓先伦,童娅娟,等.成型炭生产过程中气、固产物特性及利用[J].林业工程学报,2007,21(05):60.
[4]黄曹兴,何娟,闵斗勇,等.稀硫酸预处理对毛竹竹黄木质素结构的影响[J].林业工程学报,2016,1(01):55.[doi:10.13360/j.issn.2096-1359.2016.01.011]
 HUANG Caoxing,HE Juan,MIN Douyong,et al.Effect of dilute acid pretreatment on the lignin structure of Moso bamboo inner skin[J].Journal of Forestry Engineering,2016,1(05):55.[doi:10.13360/j.issn.2096-1359.2016.01.011]
[5]周建斌,周秉亮,马欢欢,等.生物质气化多联产技术的集成创新与应用[J].林业工程学报,2016,1(02):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
 ZHOU Jianbin,ZHOU Bingliang,MA Huanhuan,et al.Integrated innovation and application of biomass gasification poly-generation technology[J].Journal of Forestry Engineering,2016,1(05):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
[6]李震,吴家雄.基于平模温度场的疲劳寿命分析[J].林业工程学报,2016,1(02):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
 LI Zhen,WU Jiaxiong.Fatigue life analysis based on the temperature field of flat die[J].Journal of Forestry Engineering,2016,1(05):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
[7]颉盼盼,连海兰*,孙香.氯化胆碱/丙三醇低共熔离子液改性 木质素酚醛树脂[J].林业工程学报,2016,1(04):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
 XIE Panpan,LIAN Hailan*,SUN Xiang.Modification of lignin-phenol-formaldehyde adhesive with ChCl/Glycerol deep-eutectic solvent[J].Journal of Forestry Engineering,2016,1(05):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
[8]缪正调,杨海艳Δ,史正军*,等.水热环境下的核桃壳木质素提取及结构表征[J].林业工程学报,2016,1(06):108.[doi:10.13360/j.issn.2096-1359.2016.06.018]
 MIAO Zhengdiao,YANG Haiyan,SHI Zhengjun*,et al.Isolation and characterization of lignin fractions from hydrothermal pretreated walnut shell[J].Journal of Forestry Engineering,2016,1(05):108.[doi:10.13360/j.issn.2096-1359.2016.06.018]
[9]邸明伟,王森,姚子巍.木质素基非甲醛木材胶黏剂的研究进展[J].林业工程学报,2017,2(01):8.[doi:10.13360/j.issn.2096-1359.2017.01.002]
 DI Mingwei,WANG Sen,YAO Ziwei.Research progress in the lignin-based formaldehyde-free wood adhesives[J].Journal of Forestry Engineering,2017,2(05):8.[doi:10.13360/j.issn.2096-1359.2017.01.002]
[10]李震,赵钰龙,吴家雄,等.平模成型机结构参数对成型过程的影响*[J].林业工程学报,2017,2(01):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]
 LI Zhen,ZHAO Yulong,WU Jiaxiong,et al.Influence of structural parameters on flat mould plate[J].Journal of Forestry Engineering,2017,2(05):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]

备注/Memo

备注/Memo:
收稿日期:2019-05-03 修回日期:2019-07-03
基金项目:国家自然科学基金(21776020)。
作者简介:宋国勇,男,教授,研究方向为生物质催化转化。E-mail:songg@bjfu.edu.cn
更新日期/Last Update: 2019-09-10