参考文献/References:
[1] ZHAO X, ZHOU H, SIKARWAR V S, et al.Biomass-based chemical looping technologies: the good, the bad and the future[J].Energy Environmental Science, 2017, 10(9): 1885-1910.DOI: 10.1039/C6EE03718F.
[2] TUCK C O, PÉREZ E, HORVÁTH I T, et al.Valorization of biomass: deriving more value from waste[J].Science, 2012, 337(6095): 695-699.DOI: 10.1126/science.1218930.
[3] SOMERVILLE C, YOUNGS H, TAYLOR C, et al.Feedstocks for lignocellulosic biofuels[J].Science, 2010, 329(5993): 790-792.DOI: 10.1126/science.1189268.
[4] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.Lignin valorization: improving lignin processing in the biorefinery[J].Science, 2014, 344(6185): 1246843.DOI: 10.1126/science.1246843.
[5] RINALDI R, JASTRZEBSKI R, CLOUGH M T, et al.Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis[J].Angewandte Chemie International Edition, 2016, 55(29): 8164-8215.DOI: 10.1002/anie.201510351.
[6] CONSTANT S, WIENK H L J, FRISSEN A E, et al.New insights into the structure and composition of technical lignins: a comparative characterisation study[J].Green Chemistry, 2016, 18(9): 2651-2665.DOI: 10.1039/C5GC03043A.
[7] LI C, ZHAO X, WANG A, et al.Catalytic transformation of lignin for the production of chemicals and fuels[J].Chem Reviews, 2015, 115(21): 11559-11624.DOI: 10.1021/acs.chemrev.5b00155.
[8] SUN Z, FRIDRICH B, DE SANTI A, et al.Bright side of lignin depolymerization: toward new platform chemicals[J].Chem Reviews, 2018, 118(2): 614-678.DOI: 10.1021/acs.chemrev.7b00588.
[9] GALKIN M V, SAMEC J S M.Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery[J].ChemSusChem, 2016, 9(13): 1544-1558.DOI: 10.1002/cssc.201600237.
[10] CAO L, YU I K M, LIU Y, et al.Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects[J].Bioresource Technology, 2018, 269: 465-475.DOI: 10.1016/j.biortech.2018.08.065.
[11] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, et al.Lignin-first biomass fractionation: the advent of active stabilisation strategies[J].Energy Environmental Science, 2017, 10(7): 1551-1557.DOI: 10.1039/c7ee01298e.
[12] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al.Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J].Chemical Society Reviews, 2018, 47(3): 852-908.DOI: 10.1039/c7cs00566k.
[13] HARRIS D, DEBOLT S.Synthesis, regulation and utilization of lignocellulosic biomass[J].Plant Biotechnology Journal, 2010, 8(3): 244-262.DOI: 10.1111/j.1467-7652.2009.00481.x.
[14] BOERJAN W, RALPH J, BAUCHER M.Lignin biosynthesis[J].Annual Review Plant Biology, 2003, 54(1): 519-546.DOI: 10.1146/annurev.arplant.54.031902.134938.
[15] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al.Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J].Energy Environmental Science, 2015, 8(6): 1748-1763.DOI: 10.1039/c5ee00204d.
[16] LUTERBACHER J S, AZARPIRA A, MOTAGAMWALA A H, et al.Lignin monomer production integrated into the γ-valerolactone sugar platform[J].Energy Environmental Science, 2015, 8(9): 2657-2663.DOI: 10.1039/C5EE01322D.
[17] XIAO L P, WANG S, LI H, et al.Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J].ACS Catalysis, 2017, 7(11): 7535-7542.DOI: 10.1021/acscatal.7b02563.
[18] SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, et al.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J].Science, 2016, 354(6310): 329-333.DOI: 10.1126/science.aaf7810.
[19] YAN N, ZHAO C, DYSON P J, et al.Selective degradation of wood lignin over noble-metal catalysts in a two-step process[J].ChemSusChem, 2008, 1(7): 626-629.DOI: 10.1002/cssc.200800080.
[20] FEGHALI E, CARROT G, THUÉRY P, et al.Convergent reductive depolymerization of wood lignin to isolated phenol derivatives by metal-free catalytic hydrosilylation[J].Energy Environmental Science, 2015, 8(9): 2734-2743.DOI: 10.1039/c5ee01304f.
[21] SONG Q, WANG F, CAI J, et al.Lignin depolymerization(LDP)in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J].Energy Environmental Science, 2013, 6(3): 994-1007.DOI: 10.1039/c2ee23741e.
[22] VAN DEN BOSCH S, RENDERS T, KENNIS S, et al.Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3 catalyst pellets during lignin-first fractionation[J].Green Chemistry, 2017, 19(14): 3313-3326.DOI: 10.1039/c7gc01324h.
[23] LI C, ZHENG M, WANG A, et al.One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J].Energy Environmental Science, 2012, 5(4): 6383-6390.DOI: 10.1039/c1ee02684d.
[24] PARSELL T, YOHE S, DEGENSTEIN J, et al.A synergistic biorefinery based on catalytic conversion of lignin prior to cellulose starting from lignocellulosic biomass[J].Green Chemistry, 2015, 17(3): 1492-1499.DOI: 10.1039/C4GC01911C.
[25] VAN DEN BOSCH S, SCHUTYSER W, KOELEWIJN S F, et al.Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J].Chemical Communications, 2015, 51(67): 13158-13161.DOI: 10.1039/c5cc04025f.
[26] FURIKADO I, MIYAZAWA T, KOSO S, et al.Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen[J].Green Chemistry, 2007, 9(6): 582-588.DOI: 10.1039/b614253b.
[27] GALKIN M V, SAMEC J S M.Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis[J].ChemSusChem, 2014, 7(8): 2154-2158.DOI: 10.1002/cssc.201402017.
[28] HUANG X, MORALES GONZALEZ O M, ZHU J, et al.Reductive fractionation of woody biomass into lignin monomers and cellulose by tandem metal triflate and Pd/C catalysis[J].Green Chemistry, 2017, 19(1): 175-187.DOI: 10.1039/c6gc02962k.
[29] RENDERS T, SCHUTYSER W, VAN DEN BOSCH S, et al.Influence of acidic(H3PO4)and alkaline(NaOH)additives on the catalytic reductive fractionation of lignocellulose[J].ACS Catalysis, 2016, 6(3): 2055-2066.DOI: 10.1021/acscatal.5b02906.
[30] CHEN J, LU F, SI X, et al.High yield production of natural phenolic alcohols from woody biomass using a nickel-based catalyst[J].ChemSusChem, 2016, 9(23): 3353-3360.DOI: 10.1002/cssc.201601273.
[31] ZHAI Y, LI C, XU G, et al.Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon[J].Green Chemistry, 2017, 19: 1895-1903.DOI: 10.1039/C7GC00149E.
[32] LIU X, LI H, XIAO L P, et al.Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst[J].Green Chemistry, 2019, 21(6): 1498-1504.DOI: 10.1039/C8GC03511C.
[33] MINAMI E, SAKA S.Comparison of the decomposition behaviors of hardwood and softwood in supercritical methanol[J].Journal of Wood Science, 2003, 49(1): 73-78.DOI: 10.1007/s100860300012.
[34] KUMANIAEV I, SUBBOTINA E, SÄVMARKER J, et al.Lignin depolymerization to monophenolic compounds in a flow-through system[J].Green Chemistry, 2017, 19(24): 5767-5771.DOI: 10.1039/C7GC02731A.
[35] CHOI J, SHIN K M, PARK H J, et al.Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin[J].Planta Medica, 2004, 70(11): 1027-1032.DOI: 10.1055/s-2004-832642.
[36] KÖNIG S, FEUSSNER K, KAEVER A, et al.Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum[J].New Phytologist, 2014, 202(3): 823-837.DOI: 10.1111/nph.12709.
[37] SUN J, LI H, XIAO L P, et al.Fragmentation of woody lignocellulose into primary monolignols and their derivatives[J].ACS Sustainable Chemistry and Engineering, 2019, 7(5): 4666-4674.DOI: 10.1021/acssuschemeng.8b04032.
[38] RAUTIAINEN S, DI FRANCESCO D, KATEA S N, et al.Lignin valorization by cobalt-catalyzed fractionation of lignocellulose to yield monophenolic compounds[J].ChemSusChem, 2019, 12(2): 404-408.DOI: 10.1002/cssc.201802497.
[39] REICHARDT C.Solvatochromic dyes as solvent polarity indicators[J].Chemical Reviews, 1994, 94(8): 2319-2358.DOI: 10.1021/cr00032a005.
[40] SCHUTYSER W, VAN DEN BOSCH S, RENDERS T, et al.Influence of bio-based solvents on the catalytic reductive fractionation of birch wood[J].Green Chemistry, 2015, 17(11): 5035-5045.DOI: 10.1039/C5GC01442E.
[41] RUIZ H A, THOMSEN M H, TRAJANO H L.Hydrothermal processing in bioreneries[M].Switzerland: Springer, 2017.
[42] GALKIN M V, SMIT A T, SUBBOTINA E, et al.Hydrogen-free catalytic fractionation of woody biomass[J].ChemSusChem, 2016, 9(23): 3280-3287.DOI: 10.1002/cssc.201600648.
[43] BROSSE N, DUFOUR A, MENG X, et al.Miscanthus: a fast-growing crop for biofuels and chemicals production[J].Biofuels Bioproducts and Biorefining-Biofpr, 2012, 6(5): 580-598.DOI: 10.1002/bbb.1353.
[44] SUN R C, SUN X F, ZHANG S H.Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood[J].Journal of Agricultural Food Chemistry, 2001, 49(11): 5122-5129.DOI: 10.1021/jf010500r.
[45] RALPH J, HATFIELD R D, QUIDEAU S, et al.Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR[J].Journal of the American Chemical Society, 1994, 116(21): 9448-9456.DOI: 10.1021/ja00100a006.
[46] LUO H, KLEIN I M, JIANG Y, et al.Total utilization of miscanthus biomass, lignin and carbohydrates, using earth abundant nickel catalyst[J].ACS Sustainable Chemistry and Engineering, 2016, 4(4): 2316-2322.DOI: 10.1021/acssuschemeng.5b01776.
[47] ANDERSON E M, KATAHIRA R, REED M, et al.Reductive catalytic fractionation of corn stover lignin[J].ACS Sustainable Chemistry and Engineering, 2016, 4(12): 6940-6950.DOI: 10.1021/acssuschemeng.6b01858.
[48] ZHANG K, LI H, XIAO L P, et al.Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin[J].Bioresource Technology, 2019, 285:121335.DOI: 10.1016/j.biortech.2019.121335.
[49] WANG S, GAO W, LI H, et al.Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst[J].ChemSusChem, 2018, 11(13): 2114-2123.DOI: 10.1002/cssc.201800455.
[50] ANDERSON E M, STONE M L, KATAHIRA R, et al.Flowthrough reductive catalytic fractionation of biomass[J].Joule, 2017, 1(3): 613-622.DOI: 10.1016/j.joule.2017.10.004.
[51] ZHU G, QIU X, ZHAO Y, et al.Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols[J].Bioresource Technology, 2016, 218:718-722.DOI: 10.1016/j.biortech.2016.07.021.
[52] LI H, SONG G Y.Ru-catalyzed hydrogenolysis of lignin: base-dependent tunability of monomeric phenols and mechanistic study[J].ACS Catalysis, 2019, 4054-4064.DOI: 10.1038/s41929-018-0148-8.
[53] LOHR T L, LI Z, MARKS T J.Selective ether/ester C—O cleavage of an acetylated lignin model via tandem catalysis[J].ACS Catalysis, 2015, 5(11): 7004-7007.DOI: 10.1021/acscatal.5b01972.
[54] SUN Z, BOTTARI G, AFANASENKO A, et al.Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels[J].Nature Catalysis, 2018, 1(1): 82-92.DOI: 10.1038/s41929-017-0007-z.
[55] KLEIN I, MARCUM C, KENTTÄMAA H, et al.Mechanistic investigation of the Zn/Pd/C catalyzed cleavage and hydrodeoxygenation of lignin[J].Green Chemistry, 2016, 18(8): 2399-2405.DOI: 10.1039/C5GC01325A.
[56] WU X, FAN X, XIE S, et al.Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions[J].Nature Catalysis, 2018, 1(10): 772-780.DOI: 10.1038/s41929-018-0148-8.
相似文献/References:
[1]雷洪,杜官本*.生物质木材胶黏剂的研究进展[J].林业工程学报,2012,26(03):7.
[2]邹局春,郑志锋,张宏健,等.生物质苯酚液化产物在模塑材料中的应用[J].林业工程学报,2007,21(02):15.
[3]刘石彩,邓先伦,童娅娟,等.成型炭生产过程中气、固产物特性及利用[J].林业工程学报,2007,21(05):60.
[4]黄曹兴,何娟,闵斗勇,等.稀硫酸预处理对毛竹竹黄木质素结构的影响[J].林业工程学报,2016,1(01):55.[doi:10.13360/j.issn.2096-1359.2016.01.011]
HUANG Caoxing,HE Juan,MIN Douyong,et al.Effect of dilute acid pretreatment on the lignin structure of
Moso bamboo inner skin[J].Journal of Forestry Engineering,2016,1(05):55.[doi:10.13360/j.issn.2096-1359.2016.01.011]
[5]周建斌,周秉亮,马欢欢,等.生物质气化多联产技术的集成创新与应用[J].林业工程学报,2016,1(02):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
ZHOU Jianbin,ZHOU Bingliang,MA Huanhuan,et al.Integrated innovation and application of biomass
gasification poly-generation technology[J].Journal of Forestry Engineering,2016,1(05):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
[6]李震,吴家雄.基于平模温度场的疲劳寿命分析[J].林业工程学报,2016,1(02):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
LI Zhen,WU Jiaxiong.Fatigue life analysis based on the temperature field of flat die[J].Journal of Forestry Engineering,2016,1(05):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
[7]颉盼盼,连海兰*,孙香.氯化胆碱/丙三醇低共熔离子液改性
木质素酚醛树脂[J].林业工程学报,2016,1(04):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
XIE Panpan,LIAN Hailan*,SUN Xiang.Modification of lignin-phenol-formaldehyde adhesive with
ChCl/Glycerol deep-eutectic solvent[J].Journal of Forestry Engineering,2016,1(05):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
[8]缪正调,杨海艳Δ,史正军*,等.水热环境下的核桃壳木质素提取及结构表征[J].林业工程学报,2016,1(06):108.[doi:10.13360/j.issn.2096-1359.2016.06.018]
MIAO Zhengdiao,YANG Haiyan,SHI Zhengjun*,et al.Isolation and characterization of lignin fractions from
hydrothermal pretreated walnut shell[J].Journal of Forestry Engineering,2016,1(05):108.[doi:10.13360/j.issn.2096-1359.2016.06.018]
[9]邸明伟,王森,姚子巍.木质素基非甲醛木材胶黏剂的研究进展[J].林业工程学报,2017,2(01):8.[doi:10.13360/j.issn.2096-1359.2017.01.002]
DI Mingwei,WANG Sen,YAO Ziwei.Research progress in the lignin-based formaldehyde-free
wood adhesives[J].Journal of Forestry Engineering,2017,2(05):8.[doi:10.13360/j.issn.2096-1359.2017.01.002]
[10]李震,赵钰龙,吴家雄,等.平模成型机结构参数对成型过程的影响*[J].林业工程学报,2017,2(01):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]
LI Zhen,ZHAO Yulong,WU Jiaxiong,et al.Influence of structural parameters on flat mould plate[J].Journal of Forestry Engineering,2017,2(05):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]