参考文献/References:
[1] KLEMM D, KRAMER F, MORITZ S, et al.Nanocelluloses: anew family of nature-based materials[J].Angewandte Chemie International Edition, 2011, 50(24): 5438-5466.DOI: 10.1002/anie.201001273.
[2] 邹竹帆, 杨翔皓, 王慧, 等.酸水解法制备纤维素纳米晶体的研究进展[J].中国造纸, 2019, 38(3): 61-69.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
ZOU Z F, YANG X H, WANG H, et al.Advance in preparation of cellulose nanocrystals by acid hydrolysis[J].China Pulp & Paper, 2019, 38(3): 61-69.
[3] 杜海顺.甲酸水解法制备纳米纤维素及其自组装膜的表征[D].天津: 天津科技大学, 2017.
DU H S.Preparation and charaterizatio of nanocellulose and self-assembly nanocellulose films based on formic acid hydrolysis[D].Tianjin: Tianjin University of Science and Technology, 2017.
[4] 杜海顺, 刘超, 张苗苗, 等.纳米纤维素的制备及产业化[J].化学进展, 2018, 30(4): 448-462.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
DU H S, LIU C, ZHANG M M, et al.Preparation and industrialization of nanocellulose[J].Progress in Chemistry, 2018, 30(4): 448-462.
[5] 张思航, 付润芳, 董立琴, 等.纳米纤维素的制备及其复合材料的应用研究进展[J].中国造纸, 2017, 36(1): 67-74.DOI: 10.11980/j.issn.0254-508X.2019, 03.011.
ZHANG S H, FU R F, DONG L Q, et al.Progress in preparation of nanocellulose and its application in composites[J].China Pulp & Paper, 2017, 36(1): 67-74.
[6] 徐春霞, 降帅, 韩阜益, 等.TEMPO氧化体系协同超声波法纤维素纳米纤丝的制备及表征[J].纺织科学与工程学报, 2018, 35(4): 102-107.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
XU C X, JIANG S, HAN F Y, et al.Preparation and characterization of cellulose nanofibrils by TEMPO oxidation system combined with ultrasonication[J].Journal of Textile Science and Engineering, 2018, 35(4): 102-107.
[7] GU F, WANG W, CAI Z, et al.Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales[J].Cellulose, 2018, 25(5): 2861-2871.DOI:10.1007/s10570-018-1765-8.
[8] XU W, WANG X, SANDLER N, et al.Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications[J].ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5663-5680.DOI: 10.1021/acssuschemeng.7b03924.
[9] 徐朝阳, 李健昱, 石小梅, 等.聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J].复合材料学报, 2017, 34(4): 480-485.DOI: 10.13801/j.cnki.fhclxb.20160819.001.
XU Z Y, LI J Y, SHI X M, et al.Preparation and properties of polyethylene glycol-modified cellulose nanofibers/polyvinyl alcohol composite hydrogel[J].Acta Materiae Compositae Sinica, 2017, 34(4): 480-485.
[10] WAY A E, HSU L, SHANMUGANATHAN K, et al.pH-responsive cellulose nanocrystal gels and nanocomposites[J].ACS Macro Letters, 2012, 1(8): 1001-1006.
[11] 盛超, 周益明, 薛国新.纳米纤维纳米纤维素增强壳聚糖/聚乙烯醇水凝胶的制备及其性能研究[J].中华纸业, 2018, 39(2): 16-21.
SHENG C, ZHOU Y M, XUE G X.Preparation and characterization of chitosan/polyvinyl alcohol hydrogel filled with cellulose nanowhiskers[J].China Pulp & Paper Industry, 2018, 39(2): 16-21.
[12] FU L H, QI C, MA M G, et al.Multifunctional cellulose-based hydrogels for biomedical applications[J].Journal of Materials Chemistry,2019, 7(10): 1541-1562.DOI: 10.1039/c8tb02331j.
[13] GONZALEZ J S, LUDUENA L N, PONCE A, et al.Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings[J].Materials Science and Engineering: C, 2014, 34: 54-61.DOI: 10.1016/j.msec.2013, 10.006.
[14] YANG J, ZHAO J J, HAN C R, et al.Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide)clusters: influence of the charge density, aspect ratio and surface coating with PEG[J].Cellulose, 2014, 21(1): 541-551.DOI: 10.1007/s10570-013-0111-4.
[15] de FRANCE K J, CHAN K J, CRANSTON E D, et al.Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate)injectable nanocomposite hydrogels through control of physical and chemical cross-linking[J].Biomacromolecules, 2016, 17(2): 649-660.DOI: 10.1021/acs.biomac.5b01598.
[16] CHAU M, de FRANCE K J, KOPERA B, et al.Composite hydrogels with tunable anisotropic morphologies and mechanical properties[J].Chemistry of Materials, 2016, 28(10): 3406-3415.DOI: 10.1021/acs.chemmater.6b00792.
[17] DU H, LIU W, ZHANG M, et al.Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J].Carbohydrate Polymers, 2019, 209: 130-144.DOI: 10.1016/j.carbpol.2019.01.020.
[18] YANG J, HAN C, XU F, et al.Simple approach to reinforce hydrogels with cellulose nanocrystals[J].Nanoscale, 2014, 6(11): 5934-5943.DOI: 10.1039/C4NR01214C.
[19] LIU R, DAI L, SI C, et al.Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers[J].Carbohydrate Polymers, 2018, 195: 63-70.DOI: 10.1016/j.carbpol.2018.04.085.
[20] DONG H, SNYDER J F, TRAN D T, et al.Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles[J].Carbohydrate Polymers, 2013, 95(2): 760-767.DOI: 10.1016/j.carbpol.2013.03.041.
[21] ZANDER N E, DONG H, STEELE J, et al.Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates[J].ACS Applied Materials & Interfaces, 2014, 6(21): 18502-18510.DOI: 10.1021/am506007z.
[22] LU J S, ZHU W Y, DAI L, et al.Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles[J].Carbohydrate Polymers, 2019, 215: 289-295.DOI: 10.1016/j.carbpol.2019.03.100.
[23] KONG W, WANG C, JIA C, et al.Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J].Advanced Materials, 2018, 30(39): 1801934.DOI: 10.1002/adma.201801934.
[24] SUPRAMANIAM J, ADNAN R, MOHD K N H, et al.Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system[J].International Journal of Biological Macromolecules, 2018, 118: 640-648.DOI: 10.1016/j.ijbiomac.2018.06.043.
[25] OOI S Y, AHMAD I, AMIN M.Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems[J].Industrial Crops and Products, 2016, 93: 227-234.DOI: 10.1016/j.indcrop.2015.11.082.
[26] LIN N, GEZE A, WOUESSIDJEWE D, et al.Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery[J].ACS Applied Materials & Interfaces, 2016, 8(11): 6880-6889.DOI: 10.1021/acsami.6b00555.
[27] HUANG W, WANG Y, HUANG Z, et al.On-demand dissolvable delf-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing[J].ACS Applied Materials & Interfaces, 2018, 10(48): 41076-41088.DOI: 10.1021/acsami.8b14526.
[28] PALAGANAS N B, MANGADLAO J D,de LEON A C C, et al.3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography[J].ACS Applied Materials Interfaces, 2017, 9(39): 34314-34324.DOI: 10.1021/acsami.7b09223.
[29] HUJAYA S D, LORITE G S, VAINIO S J, et al.Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin[J].Acta Biomater, 2018, 75: 346-357.DOI: 10.1016/j.actbio.2018.06.013.
[30] ZHANG H, YANG C, ZHOU W, et al.A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics[J].ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13924-13931.DOI: 10.1021/acssuschemeng.8b02237.
[31] MASRUCHIN N, PARK B D, CAUSIN V.Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide)for model drug release[J].Cellulose, 2018, 25(1): 485-502.DOI: 10.1007/s10570-017-1585-2.
[32] BASU A, HEITZ K, STROMME M, et al.Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications[J].Carbohydrate Polymers, 2018, 181: 345-350.DOI: 10.1016/j.carbpol.2017.10.085.
[33] LIU Y, SUI Y, LIU C, et al.A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing[J].Carbohydrate Polymers, 2018, 188: 27-36.DOI: 10.1016/j.carbpol.2018.01.093.
[34] ABOUZEID R E, KHIARI R, BENEVENTI D, et al.Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering[J].Biomacromolecules, 2018, 19(11): 4442-4452.DOI: 10.1021/acs.biomac.8b01325.
[35] 金志文, 车玉菊.纤维素纳米晶须及其水凝胶的研究进展[J].高分子材料科学与工程, 2019,35(2):183-190.DOI: 10.16865/j.cnki.1000-7555.2019.0061.
JIN Z W, CHE Y J.Research progress of cellulose nanowhiskers and their hydrogels[J].Polymer Materials Science and Engineering, 2019,35(2):183-190.
[36] 李德贵.纳米纤维素基药物缓释材料的制备及表征[D].广州: 华南理工大学, 2016.
LI D G.Preparation and characterization of nanocellulose-based drug delivery materials[D].Guangzhou: South China University of Technology, 2016.
[37] HALIB N, AHMAD I.Nanocellulose: insight into health and medical applications[J].Handbook of Ecomaterials, 2017: 1-19.DOI: 10.1007/978-3-319-48281-1_5-1.
[38] LI W, LAN Y, GUO R, et al.In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor[J].Journal of Biomaterials Applications, 2014, 29(6): 882-893.DOI: 10.1177/0885328214547091.
[39] MAURICIO M R, DA COSTA P G, HARAGUCHI S K, et al.Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery[J].Carbohydrate Polymers, 2015, 115: 715-722.DOI: 10.1016/j.carbpol.2014.07.063.
[40] ÅHLÉN M, TUMMALA G K, MIHRANYAN A.Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications[J].International Journal of Pharmaceutics, 2018, 536(1): 73-81.DOI: 10.1016/j.ijpharm.2017.11.053.
[41] LAUREN P, LOU Y R, RAKI M, et al.Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release[J].European Journal of Pharmaceutical Sciences, 2014, 65: 79-88.DOI: 10.1016/j.ejps.2014.09.013.
[42] PAUKKONEN H, KUNNARI M, LAUREN P, et al.Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release[J].International Journal of Pharmaceutics, 2017, 532(1): 269-280.DOI: 10.1016/j.ijpharm.2017.09.002.
[43] PAULRAJ T, RIAZANOVA A V, SVAGAN A J.Bioinspired capsules based on nanocellulose, xyloglucan and pectin-the influence of capsule wall composition on permeability properties[J].Acta Biomaterials, 2018, 69: 196-205.DOI: 10.1016/j.actbio.2018.01.003.
[44] 张浩.纤维素基纳米复合膜的制备及其用于皮肤组织修复的研究[D].武汉: 武汉工程大学, 2016.
ZHANG H.Development of cellulose-based nanocomposite membrane and studay on its skin tissue repair application[D].Wuhan: Wuhan Institute of Technology, 2016.
[45] LIU J, CHINGA-CARRASCO G, CHENG F, et al.Hemicellulose-reinforced nanocellulose hydrogels for wound healing application[J].Cellulose, 2016, 23(5): 3129-3143.DOI: 10.1007/s10570-016-1038-3.
[46] LIU M, ZENG X, MA C, et al.Injectable hydrogels for cartilage and bone tissue engineering[J].Bone Research, 2017, 5: 17014.DOI: 10.1038/boneres.2017.14.
[47] HUANG C, HAO N, BHAGIA S, et al.Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose[J].Materialia, 2018, 4: 237-246.DOI: 10.1016/j.mtla.2018.09.008.
[48] DAI L, CHENG T, DUAN C, et al.3D printing using plant-derived cellulose and its derivatives: a review[J].Carbohydr Polym, 2019, 203: 71-86.DOI: 10.1016/j.carbpol.2018.09.027.
[49] MARKSTEDT K, MANTAS A, TOURNIER I, et al.3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J].Biomacromolecules, 2015, 16(5): 1489-1496.DOI: 10.1021/acs.biomac.5b00188.
[50] YANG X, BAKAIC E, HOARE T, et al.Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity[J].Biomacromolecules, 2013, 14(12): 4447-4455.DOI: 10.1021/bm401364z.
[51] DOMINGUES R M A, SILVA M, GERSHOVICH P, et al.Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications[J].Bioconjugate Chemistry, 2015, 26(8): 1571-1581.DOI: 10.1021/acs.bioconjchem.5b00209.
[52] MENDES B B, GOMEZ-FLORIT M, PIRES R A, et al.Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior[J].Nanoscale, 2018, 10(36): 17388-17401.DOI: 10.1039/C8NR04273J.
[53] DOENCH I, TORRES-RAMOS M E W, MONTEMBAULT A, et al.Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering[J].Polymers, 2018, 10(11): 1-27.DOI: 10.3390/polym10111202.