[1]刘慰,司传领*,杜海顺,等.纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展[J].林业工程学报,2019,4(05):11-19.[doi:10.13360/j.issn.2096-1359.2019.05.002]
 LIU Wei,SI Chuanling*,DU Haishun,et al.Advance in preparation of nanocellulose-based hydrogels and their biomedical applications[J].Journal of Forestry Engineering,2019,4(05):11-19.[doi:10.13360/j.issn.2096-1359.2019.05.002]
点击复制

纳米纤维素基水凝胶的制备及其在生物医学领域的应用进展()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
11-19
栏目:
专论综述
出版日期:
2019-09-16

文章信息/Info

Title:
Advance in preparation of nanocellulose-based hydrogels and their biomedical applications
文章编号:
2096-1359(2019)05-0011-09
作者:
刘慰1司传领1*杜海顺2张苗苗2ZHANG Xinyu2解洪祥1
1.天津科技大学,天津市制浆造纸重点实验室,天津 300457; 2.Department of Chemical Engineering, Auburn University, Auburn 36849, USA
Author(s):
LIU Wei1 SI Chuanling1* DU Haishun2 ZHANG Miaomiao2 ZHANG Xinyu2 XIE Hongxiang1
1.Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; 2.Department of Chemical Engineering, Auburn University, Auburn 36849, USA
关键词:
纤维素纳米晶体 纤维素纳米纤维 水凝胶 生物医学应用
Keywords:
cellulose nanofibrils cellulose nanocrystals hydrogels biomedical applications
分类号:
TQ352
DOI:
10.13360/j.issn.2096-1359.2019.05.002
文献标志码:
A
摘要:
纤维素纳米晶体(cellulose nanocrystals, CNCs)和纤维素纳米纤维(cellulose nanofibrils, CNFs)具有独特的理化性质,例如,比表面积高(>100 m2/g)、机械性能优越(弹性模量130~150 GPa)、密度低(低至1.6 g/cm3)、膨胀系数小(低至0.1×10-6/K)、生物相容性好、表面多羟基结构容易进一步修饰等,且原料易得、可再生和生物降解,是理想的先进功能材料构建砌块,已被证明是具有良好应用前景的生物基纳米材料。近年来,纳米纤维素基水凝胶引起了大量的关注,并且其在生物医学领域的应用得到了广泛研究。笔者主要综述了CNCs和CNFs基水凝胶的制备及其在生物医学应用的研究进展。首先介绍了制备CNCs基水凝胶的物理交联法和化学交联法,以及CNFs与金属离子交联、CNFs与聚合物交联两种制备CNFs基水凝胶的方法; 其次重点介绍了CNCs和CNFs基水凝胶在药物递送、创伤敷料和组织工程支架中的应用; 最后总结了CNCs和CNFs基水凝胶在生物医学领域的应用前景和面临挑战,并指明了CNCs和CNFs基水凝胶在生物医学领域研究的发展方向。
Abstract:
Nanocellulose with nano size at least in one dimension is derived from cellulosic source(e.g.lignocellulosic biomass)through physical, chemical or combined methods, and recently it has drawn extensive attentions from both the academic and industrial areas due to its unique structure and exceptional properties, such as high specific surface areas(>100 m2/g), superior mechanical properties(modulus of elasticity 130-150 GPa), low density(low to 1.6 g/cm3), low expansion coefficient(around 0.1×10-6/K), significant optical properties, good biocompatibility, and abundant hydroxyl groups, which are beneficial to further surface functionalization.Moreover, the raw cellulose materials used to produce nanocellulose are renewable, biodegradable and with a huge amount of annual production(75-100 billion tons).Thus, as the ideal advanced building block for constructing various sustainable and functional materials, nanocellulose has been proved to be a promising bio-based nanomaterial.Generally, nanocellulose can be divided into two main categories: cellulose nanocrystal(CNCs)and cellulose nanofibril(CNFs),based on the differences in preparation and fabrication methods and properties.In general, CNC are rigid rod-like particles of 10-50 nm in width and several hundred nanometers in length and with high crystallinity.On the other hand, CNF with semi-crystalline structure are flexible fiber-like with a diameter less than 100 nm and a length of 500 nm to several microns.In recent years, CNCs and CNFs based hydrogels have attracted a great deal of attentions, and their applications in the biomedical field have been extensively studied.This paper mainly reviewed the preparation of CNCs- and CNFs-based hydrogels and their research progress in biomedical applications.Based on the differences in structures and properties, the preparation strategies of CNCs-based hydrogels(e.g.physical and chemical crosslinking)and CNFs-based hydrogels(e.g.CNFs-metal ion crosslinking, CNFs-polymer crosslinking)were introduced separately.In the biomedical applications section, the applications of CNCs- and CNFs-based hydrogels in drug delivery, wound dressing and tissue engineering scaffolds were highlighted.Additionally, the application prospects and challenges of CNCs- and CNFs-based hydrogels in biomedical fields were also summarized, and the future development direction and potential application aspects of CNCs- and CNFs-based hydrogels in the biomedical field was pointed out.

参考文献/References:

[1] KLEMM D, KRAMER F, MORITZ S, et al.Nanocelluloses: anew family of nature-based materials[J].Angewandte Chemie International Edition, 2011, 50(24): 5438-5466.DOI: 10.1002/anie.201001273.
[2] 邹竹帆, 杨翔皓, 王慧, 等.酸水解法制备纤维素纳米晶体的研究进展[J].中国造纸, 2019, 38(3): 61-69.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
ZOU Z F, YANG X H, WANG H, et al.Advance in preparation of cellulose nanocrystals by acid hydrolysis[J].China Pulp & Paper, 2019, 38(3): 61-69.
[3] 杜海顺.甲酸水解法制备纳米纤维素及其自组装膜的表征[D].天津: 天津科技大学, 2017.
DU H S.Preparation and charaterizatio of nanocellulose and self-assembly nanocellulose films based on formic acid hydrolysis[D].Tianjin: Tianjin University of Science and Technology, 2017.
[4] 杜海顺, 刘超, 张苗苗, 等.纳米纤维素的制备及产业化[J].化学进展, 2018, 30(4): 448-462.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
DU H S, LIU C, ZHANG M M, et al.Preparation and industrialization of nanocellulose[J].Progress in Chemistry, 2018, 30(4): 448-462.
[5] 张思航, 付润芳, 董立琴, 等.纳米纤维素的制备及其复合材料的应用研究进展[J].中国造纸, 2017, 36(1): 67-74.DOI: 10.11980/j.issn.0254-508X.2019, 03.011.
ZHANG S H, FU R F, DONG L Q, et al.Progress in preparation of nanocellulose and its application in composites[J].China Pulp & Paper, 2017, 36(1): 67-74.
[6] 徐春霞, 降帅, 韩阜益, 等.TEMPO氧化体系协同超声波法纤维素纳米纤丝的制备及表征[J].纺织科学与工程学报, 2018, 35(4): 102-107.DOI: 10.11980/j.issn.0254-508X.2019.03.011.
XU C X, JIANG S, HAN F Y, et al.Preparation and characterization of cellulose nanofibrils by TEMPO oxidation system combined with ultrasonication[J].Journal of Textile Science and Engineering, 2018, 35(4): 102-107.
[7] GU F, WANG W, CAI Z, et al.Water retention value for characterizing fibrillation degree of cellulosic fibers at micro and nanometer scales[J].Cellulose, 2018, 25(5): 2861-2871.DOI:10.1007/s10570-018-1765-8.
[8] XU W, WANG X, SANDLER N, et al.Three-dimensional printing of wood-derived biopolymers: a review focused on biomedical applications[J].ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5663-5680.DOI: 10.1021/acssuschemeng.7b03924.
[9] 徐朝阳, 李健昱, 石小梅, 等.聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J].复合材料学报, 2017, 34(4): 480-485.DOI: 10.13801/j.cnki.fhclxb.20160819.001.
XU Z Y, LI J Y, SHI X M, et al.Preparation and properties of polyethylene glycol-modified cellulose nanofibers/polyvinyl alcohol composite hydrogel[J].Acta Materiae Compositae Sinica, 2017, 34(4): 480-485.
[10] WAY A E, HSU L, SHANMUGANATHAN K, et al.pH-responsive cellulose nanocrystal gels and nanocomposites[J].ACS Macro Letters, 2012, 1(8): 1001-1006.
[11] 盛超, 周益明, 薛国新.纳米纤维纳米纤维素增强壳聚糖/聚乙烯醇水凝胶的制备及其性能研究[J].中华纸业, 2018, 39(2): 16-21.
SHENG C, ZHOU Y M, XUE G X.Preparation and characterization of chitosan/polyvinyl alcohol hydrogel filled with cellulose nanowhiskers[J].China Pulp & Paper Industry, 2018, 39(2): 16-21.
[12] FU L H, QI C, MA M G, et al.Multifunctional cellulose-based hydrogels for biomedical applications[J].Journal of Materials Chemistry,2019, 7(10): 1541-1562.DOI: 10.1039/c8tb02331j.
[13] GONZALEZ J S, LUDUENA L N, PONCE A, et al.Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings[J].Materials Science and Engineering: C, 2014, 34: 54-61.DOI: 10.1016/j.msec.2013, 10.006.
[14] YANG J, ZHAO J J, HAN C R, et al.Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide)clusters: influence of the charge density, aspect ratio and surface coating with PEG[J].Cellulose, 2014, 21(1): 541-551.DOI: 10.1007/s10570-013-0111-4.
[15] de FRANCE K J, CHAN K J, CRANSTON E D, et al.Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate)injectable nanocomposite hydrogels through control of physical and chemical cross-linking[J].Biomacromolecules, 2016, 17(2): 649-660.DOI: 10.1021/acs.biomac.5b01598.
[16] CHAU M, de FRANCE K J, KOPERA B, et al.Composite hydrogels with tunable anisotropic morphologies and mechanical properties[J].Chemistry of Materials, 2016, 28(10): 3406-3415.DOI: 10.1021/acs.chemmater.6b00792.
[17] DU H, LIU W, ZHANG M, et al.Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J].Carbohydrate Polymers, 2019, 209: 130-144.DOI: 10.1016/j.carbpol.2019.01.020.
[18] YANG J, HAN C, XU F, et al.Simple approach to reinforce hydrogels with cellulose nanocrystals[J].Nanoscale, 2014, 6(11): 5934-5943.DOI: 10.1039/C4NR01214C.
[19] LIU R, DAI L, SI C, et al.Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers[J].Carbohydrate Polymers, 2018, 195: 63-70.DOI: 10.1016/j.carbpol.2018.04.085.
[20] DONG H, SNYDER J F, TRAN D T, et al.Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles[J].Carbohydrate Polymers, 2013, 95(2): 760-767.DOI: 10.1016/j.carbpol.2013.03.041.
[21] ZANDER N E, DONG H, STEELE J, et al.Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates[J].ACS Applied Materials & Interfaces, 2014, 6(21): 18502-18510.DOI: 10.1021/am506007z.
[22] LU J S, ZHU W Y, DAI L, et al.Fabrication of thermo- and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles[J].Carbohydrate Polymers, 2019, 215: 289-295.DOI: 10.1016/j.carbpol.2019.03.100.
[23] KONG W, WANG C, JIA C, et al.Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J].Advanced Materials, 2018, 30(39): 1801934.DOI: 10.1002/adma.201801934.
[24] SUPRAMANIAM J, ADNAN R, MOHD K N H, et al.Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system[J].International Journal of Biological Macromolecules, 2018, 118: 640-648.DOI: 10.1016/j.ijbiomac.2018.06.043.
[25] OOI S Y, AHMAD I, AMIN M.Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems[J].Industrial Crops and Products, 2016, 93: 227-234.DOI: 10.1016/j.indcrop.2015.11.082.
[26] LIN N, GEZE A, WOUESSIDJEWE D, et al.Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery[J].ACS Applied Materials & Interfaces, 2016, 8(11): 6880-6889.DOI: 10.1021/acsami.6b00555.
[27] HUANG W, WANG Y, HUANG Z, et al.On-demand dissolvable delf-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing[J].ACS Applied Materials & Interfaces, 2018, 10(48): 41076-41088.DOI: 10.1021/acsami.8b14526.
[28] PALAGANAS N B, MANGADLAO J D,de LEON A C C, et al.3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography[J].ACS Applied Materials Interfaces, 2017, 9(39): 34314-34324.DOI: 10.1021/acsami.7b09223.
[29] HUJAYA S D, LORITE G S, VAINIO S J, et al.Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin[J].Acta Biomater, 2018, 75: 346-357.DOI: 10.1016/j.actbio.2018.06.013.
[30] ZHANG H, YANG C, ZHOU W, et al.A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics[J].ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13924-13931.DOI: 10.1021/acssuschemeng.8b02237.
[31] MASRUCHIN N, PARK B D, CAUSIN V.Dual-responsive composite hydrogels based on TEMPO-oxidized cellulose nanofibril and poly(N-isopropylacrylamide)for model drug release[J].Cellulose, 2018, 25(1): 485-502.DOI: 10.1007/s10570-017-1585-2.
[32] BASU A, HEITZ K, STROMME M, et al.Ion-crosslinked wood-derived nanocellulose hydrogels with tunable antibacterial properties: candidate materials for advanced wound care applications[J].Carbohydrate Polymers, 2018, 181: 345-350.DOI: 10.1016/j.carbpol.2017.10.085.
[33] LIU Y, SUI Y, LIU C, et al.A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing[J].Carbohydrate Polymers, 2018, 188: 27-36.DOI: 10.1016/j.carbpol.2018.01.093.
[34] ABOUZEID R E, KHIARI R, BENEVENTI D, et al.Biomimetic mineralization of three-dimensional printed alginate/TEMPO-oxidized cellulose nanofibril scaffolds for bone tissue engineering[J].Biomacromolecules, 2018, 19(11): 4442-4452.DOI: 10.1021/acs.biomac.8b01325.
[35] 金志文, 车玉菊.纤维素纳米晶须及其水凝胶的研究进展[J].高分子材料科学与工程, 2019,35(2):183-190.DOI: 10.16865/j.cnki.1000-7555.2019.0061.
JIN Z W, CHE Y J.Research progress of cellulose nanowhiskers and their hydrogels[J].Polymer Materials Science and Engineering, 2019,35(2):183-190.
[36] 李德贵.纳米纤维素基药物缓释材料的制备及表征[D].广州: 华南理工大学, 2016.
LI D G.Preparation and characterization of nanocellulose-based drug delivery materials[D].Guangzhou: South China University of Technology, 2016.
[37] HALIB N, AHMAD I.Nanocellulose: insight into health and medical applications[J].Handbook of Ecomaterials, 2017: 1-19.DOI: 10.1007/978-3-319-48281-1_5-1.
[38] LI W, LAN Y, GUO R, et al.In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor[J].Journal of Biomaterials Applications, 2014, 29(6): 882-893.DOI: 10.1177/0885328214547091.
[39] MAURICIO M R, DA COSTA P G, HARAGUCHI S K, et al.Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery[J].Carbohydrate Polymers, 2015, 115: 715-722.DOI: 10.1016/j.carbpol.2014.07.063.
[40] ÅHLÉN M, TUMMALA G K, MIHRANYAN A.Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications[J].International Journal of Pharmaceutics, 2018, 536(1): 73-81.DOI: 10.1016/j.ijpharm.2017.11.053.
[41] LAUREN P, LOU Y R, RAKI M, et al.Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release[J].European Journal of Pharmaceutical Sciences, 2014, 65: 79-88.DOI: 10.1016/j.ejps.2014.09.013.
[42] PAUKKONEN H, KUNNARI M, LAUREN P, et al.Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release[J].International Journal of Pharmaceutics, 2017, 532(1): 269-280.DOI: 10.1016/j.ijpharm.2017.09.002.
[43] PAULRAJ T, RIAZANOVA A V, SVAGAN A J.Bioinspired capsules based on nanocellulose, xyloglucan and pectin-the influence of capsule wall composition on permeability properties[J].Acta Biomaterials, 2018, 69: 196-205.DOI: 10.1016/j.actbio.2018.01.003.
[44] 张浩.纤维素基纳米复合膜的制备及其用于皮肤组织修复的研究[D].武汉: 武汉工程大学, 2016.
ZHANG H.Development of cellulose-based nanocomposite membrane and studay on its skin tissue repair application[D].Wuhan: Wuhan Institute of Technology, 2016.
[45] LIU J, CHINGA-CARRASCO G, CHENG F, et al.Hemicellulose-reinforced nanocellulose hydrogels for wound healing application[J].Cellulose, 2016, 23(5): 3129-3143.DOI: 10.1007/s10570-016-1038-3.
[46] LIU M, ZENG X, MA C, et al.Injectable hydrogels for cartilage and bone tissue engineering[J].Bone Research, 2017, 5: 17014.DOI: 10.1038/boneres.2017.14.
[47] HUANG C, HAO N, BHAGIA S, et al.Porous artificial bone scaffold synthesized from a facile in situ hydroxyapatite coating and crosslinking reaction of crystalline nanocellulose[J].Materialia, 2018, 4: 237-246.DOI: 10.1016/j.mtla.2018.09.008.
[48] DAI L, CHENG T, DUAN C, et al.3D printing using plant-derived cellulose and its derivatives: a review[J].Carbohydr Polym, 2019, 203: 71-86.DOI: 10.1016/j.carbpol.2018.09.027.
[49] MARKSTEDT K, MANTAS A, TOURNIER I, et al.3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J].Biomacromolecules, 2015, 16(5): 1489-1496.DOI: 10.1021/acs.biomac.5b00188.
[50] YANG X, BAKAIC E, HOARE T, et al.Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity[J].Biomacromolecules, 2013, 14(12): 4447-4455.DOI: 10.1021/bm401364z.
[51] DOMINGUES R M A, SILVA M, GERSHOVICH P, et al.Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications[J].Bioconjugate Chemistry, 2015, 26(8): 1571-1581.DOI: 10.1021/acs.bioconjchem.5b00209.
[52] MENDES B B, GOMEZ-FLORIT M, PIRES R A, et al.Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior[J].Nanoscale, 2018, 10(36): 17388-17401.DOI: 10.1039/C8NR04273J.
[53] DOENCH I, TORRES-RAMOS M E W, MONTEMBAULT A, et al.Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering[J].Polymers, 2018, 10(11): 1-27.DOI: 10.3390/polym10111202.

相似文献/References:

[1]李超,宦思琪,李庆德,等.纤维素纳米晶体对同轴电纺PMMA/PAN复合纳米纤维性能的影响[J].林业工程学报,2017,2(02):107.[doi:10.13360/j.issn.2096-1359.2017.02.018]
 LI Chao,HUAN Siqi,LI Qingde,et al.Effects of cellulose nanocrystals on the properties of coaxial electrospun PMMA/PAN composite nanofibers[J].Journal of Forestry Engineering,2017,2(05):107.[doi:10.13360/j.issn.2096-1359.2017.02.018]
[2]张碟,蔡杰*,徐威,等.纤维素纳米纤维水凝胶的构筑与吸附性能研究[J].林业工程学报,2019,4(02):92.[doi:10.13360/j.issn.2096-1359.2019.02.015]
 ZHANG Die,CAI Jie*,XU Wei,et al.Synthesis, characterization and adsorption property of cellulose nanofiber-based hydrogels[J].Journal of Forestry Engineering,2019,4(05):92.[doi:10.13360/j.issn.2096-1359.2019.02.015]

备注/Memo

备注/Memo:
收稿日期:2019-03-02 修回日期:2019-04-18
基金项目:第63批中国博士后科学基金面上资助(2018M631749)。
作者简介:刘慰,女,博士,研究方向为农林生物质高值转化利用。通信作者:司传领,男,教授。 E-mail: sichli@tust.edu.cn
更新日期/Last Update: 2019-09-10