[1]詹天翼,蒯炳斌,吕超,等.杨木和杉木横纹抗拉强度的含水率依存性[J].林业工程学报,2019,4(05):34-39.[doi:10.13360/j.issn.2096-1359.2019.05.005]
 ZHAN Tianyi,KUAI Bingbin,LYU Chao,et al.Moisture dependence of the tensile strength perpendicular to grain of poplar and Chinese fir[J].Journal of Forestry Engineering,2019,4(05):34-39.[doi:10.13360/j.issn.2096-1359.2019.05.005]
点击复制

杨木和杉木横纹抗拉强度的含水率依存性()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
34-39
栏目:
木材科学与技术
出版日期:
2019-09-16

文章信息/Info

Title:
Moisture dependence of the tensile strength perpendicular to grain of poplar and Chinese fir
文章编号:
2096-1359(2019)05-0034-06
作者:
詹天翼1蒯炳斌1吕超1王旋1徐康2张耀丽1*
1.南京林业大学材料科学与工程学院,南京 210037; 2.中南林业科技大学材料科学与工程学院,长沙 410004
Author(s):
ZHAN Tianyi1 KUAI Bingbin1 LYU Chao1 WANG Xuan1 XU Kang2 ZHANG Yaoli1*
1.College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
关键词:
横纹抗拉强度 含水率 塑化作用 解剖构造 容许应力
Keywords:
tensile strength perpendicular to grain moisture content plasticization effect anatomical structure allow stress
分类号:
S781.2
DOI:
10.13360/j.issn.2096-1359.2019.05.005
文献标志码:
A
摘要:
木材横纹抗拉强度是其能够高效利用的重要指标之一。为了研究含水率对木材横纹抗拉强度的影响,并计算12%含水率时的理论横纹抗拉强度值,采用饱和盐溶液调湿法,在0%~100%相对湿度范围内,测定了人工林杨木和杉木在8个平衡含水率条件下的横纹抗拉强度。结果表明:在任一含水率条件下,杨木和杉木均表现为径向抗拉强度最大,弦向最小; 在任一纹理方向上,杨木的横纹抗拉强度均高于杉木,表明木材的横纹抗拉强度与解剖构造(木射线、年轮方向)及木材密度有关。随着含水率的增加,木材横纹抗拉强度及单位含水率的横纹抗拉强度呈现下降趋势,这与水分对木材细胞壁的塑化作用及其存在状态有关。当含水率为12%时,杨木在径向和弦向的理论横纹抗拉强度分别为8.3和4.0 MPa,杉木在径向和弦向的理论横纹抗拉强度分别为4.4和2.9 MPa。两树种横纹受拉时的容许应力为0.91~2.86 MPa。该研究结果为人工林杨木和杉木在干燥、木结构设计、弯曲加工等工艺环节提供了基础数据。
Abstract:
The tensile strength perpendicular to grain is one of the essential indexes in efficient use of wood.To clarify the moisture-dependent of the tensile strength perpendicular to the grain of wood, the changes of tensile strength perpendicular to grain of two typical Chinese planation wood species: poplar(Populus tomentosa)and Chinese fir(Cunninghamia lanceolata(Lamb.)Hook)were investigated at eight moisture contents, and the theoretical tensile strength perpendicular to grain at 12% wood moisture content was calculated as well.In this study, the cross-sectional specimens of poplar and Chinese fir were prepared with the annual ring inclination of 0°, 45° or 90°.Prior to tests of the tensile strength perpendicular to grain, all the specimens were conditioned at a series relative humidity levels(0%, 11%, 33%, 58%, 75%, 85%, 94% and 100%)for 9 weeks.Higher moisture content were obtained at higher humidity levels for both poplar and Chinese fir.Based on the Hailwood-Horrobin theory, the Chinese fir specimens had more monomolecular and polymolecular water than poplar.Regardless of moisture content and wood species, the greatest and least tensile strengths perpendicular to grain were obtained in the radial direction and tangential direction, respectively.The tensile strength perpendicular to grain of poplar was higher than Chinese fir at all the grain directions.With the increasing moisture content, the tensile strength perpendicular to grain and the ratio of tensile strength perpendicular to grain to moisture content decreased.The changes of the tensile strength perpendicular to grain and the ratio of tensile strength perpendicular to grain to moisture content were associated with the wood density, anatomical characteristics(wood ray, direction of growth ring), and also the amounts of monomolecular and polymolecular water in wood cell walls.The theoretical tensile strength perpendicular to grain at 12% moisture content was calculated.As for poplar, the tensile strengths perpendicular to grain were 8.3 MPa and 4.0 MPa in the radial direction and tangential direction, respectively.As for Chinese fir, the tensile strengths perpendicular to grain were 4.4 MPa and 2.9 MPa in the radial direction and tangential direction, respectively.The acceptable stress of poplar and Chinese fir ranged from 0.91 MPa to 2.86 MPa when the tensile loading applied in the radial and tangential directions.The results of this study provided fundamental data of plantation poplar and Chinese fir for utilizing and processing technologies, such as wood drying, wood construction and bending manufacturing.

参考文献/References:

[1] JIANG J L, BACHTIAR E V, LU J X, et al.Moisture-dependent orthotropic elasticity and strength properties of Chinese fir wood[J].European Journal of Wood and Wood Products, 2017, 75(6): 927-938.DOI:10.1007/s00107-017-1166-y.
[2] YOSHIHARA H, OHTA M.Estimation of the shear strength of wood by uniaxial-tension tests of off-axis specimens[J].Journal of Wood Science, 2000, 46(2): 159-163.DOI:10.1007/bf00777364.
[3] 龚迎春, 王朝辉, 江京辉, 等.杉木目测等级规格材足尺抗压和拉伸强度的设计值研究[J].林业工程学报, 2017, 2(2): 22-27.DOI:10.13360/j.issn.2096-1359.2017.02.004.
GONG Y C, WANG Z H, JIANG J H, et al.Design values of compressive and tensile strength for visually graded Chinese fir dimension lumber[J].Journal of Forestry Engineering, 2017, 2(2): 22-27.
[4] 钟永, 武国芳, 任海青, 等.国产结构用规格材的抗拉强度设计值[J].林业科学, 2018, 54(4): 100-112.DOI:10.11707/j.1001-7488.20180412.
ZHONG Y, WU G F, REN H Q, et al.Design value of tension strength of domestic dimension lumber for structural use[J].Scientia Silvae Sinicae, 2018, 54(4): 100-112.
[5] MIYOSHI Y, KOJIRO K, FURUTA Y.Effects of density and anatomical feature on mechanical properties of various wood species in lateral tension[J].Journal of Wood Science, 2018, 64(5): 509-514.DOI:10.1007/s10086-018-1730-z.
[6] ANJOS O, PEREIRA H, ROSA M E.Tensile properties of cork in axial stress and influence of porosity, density, quality and radial position in the plank[J].European Journal of Wood and Wood Products, 2011, 69(1): 85-91.DOI:10.1007/s00107-009-0407-0.
[7] 胡文刚, 关惠元.不同应力状态下榉木弹性常数的研究[J].林业工程学报, 2017, 2(6): 31-36.DOI:10.13360/j.issn.2096-1359.2017.06.006.
HU W G, GUAN H Y.Study on elastic constants of beech in different stress states[J].Journal of Forestry Engineering, 2017, 2(6): 31-36.
[8] 李万兆, 詹先旭, 杨勇, 等.木质人造板吸水过程中内部单元体尺寸及相对位置的变化[J].林业工程学报, 2018, 3(3): 24-28.DOI:10.13360/j.issn.2096-1359.2018.03.004.
LI W Z, ZHAN X X, YANG Y, et al.Changes of size and relative position of the internal unit during water uptake of wood-based panels[J].Journal of Forestry Engineering, 2018, 3(3): 24-28.
[9] HERING S, SAFT S, RESCH E, et al.Characterisation of moisture-dependent plasticity of beech wood and its application to a multi-surface plasticity model[J].Holzforschung, 2012, 66(3): 373-380.DOI:10.1515/hf.2011.162.
[10] 江京辉, 于争争, 赵丽媛, 等.低温环境下桦木顺纹抗压强度的研究[J].林业工程学报, 2017, 2(4): 30-33.DOI:10.13360/j.issn.2096-1359.2017.04.005.
JIANG J H, YU Z Z, ZHAO L Y, et al.Study on compression strength parallel to grain of birch wood at low temperature[J].Journal of Forestry Engineering, 2017, 2(4): 30-33.
[11] 李荣荣, 徐伟, 熊先青, 等.激光加工参数对木材加工性能的影响[J].木材工业, 2018, 32(6): 28-31.DOI:10.19455/j.mcgy.20180607.
LI R R, XU W, XIONG X Q, et al.Effects of laser processing parameters on wood processability[J].China Wood Industry, 2018,32(6): 28-31.
[12] 李荣荣, 徐伟, 熊先青, 等.水热预处理对枫香木材干燥性能影响的研究[J].林产工业, 2018, 45(12): 1-3.DOI: 10.19531/j.issn.1001-5299.201812001.
LI R R, XU W, XIONG X Q, et al.Impact of hydrothermal pretreatment on drying performance of Chinese sweetgum wood[J].China Forest Products Industry, 2018, 45(12): 1-3.
[13] BACHTIAR E V, SANABRIA S J, MITTIG J P, et al.Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques[J].Wood Science and Technology, 2017, 51(1): 47-67.DOI:10.1007/s00226-016-0851-z.
[14] PEARSON H, GABBITAS B, ORMARSSON S.Tensile behaviour of radiata pine with different moisture contents at elevated temperatures[J].Holzforschung, 2012, 66(5): 659-665.DOI:10.1515/hf-2011-0185.
[15] OZYHAR T, HERING S, NIEMZ P.Moisture-dependent elastic and strength anisotropy of European beech wood in tension[J].Journal of Materials Science, 2012, 47(16): 6141-6150.DOI:10.1007/s10853-012-6534-8.
[16] HAILWOOD A J, HORROBIN S.Absorption of water by polymers: analysis in terms of a simple model[J].Transactions of the Faraday Society, 1946, 42: B084.DOI:10.1039/tf946420b084.
[17] PLACET V, PASSARD J, PERRÉ P.Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0-95 ℃: hardwood vs.softwood and normal wood vs.reaction wood[J].Holzforschung, 2007, 61(5):548-557.DOI:10.1515/hf.2007.093.
[18] 方露, 王雪花, 熊先青, 等.单板表面预处理对木塑复合胶合板耐湿循环能力的影响[J].林业工程学报, 2016, 1(1): 37-41.DOI: 10.13360/j.issn.2096-1359.2016.01.007.
FANG L, WANG X H, XIONG X Q, et al.Effects of surface pretreatments on wet cycle resistance of wood-plastic plywood[J].Journal of Forestry Engineering, 2016, 1(1): 37-41.
[19] GUO X, QING Y, WU Y Q, et al.Molecular association of adsorbed water with lignocellulosic materials examined by micro-FTIR spectroscopy[J].International Journal of Biological Macromolecules, 2016, 83: 117-125.DOI:10.1016/j.ijbiomac.2015.11.047.
[20] LENTH C A, KAMKE F A.Moisture dependent softening behavior of wood[J].Wood and Fiber Science, 2001, 33(3): 492-507.

相似文献/References:

[1]高珊 王立海 王喜平.温度及水分状态对美国红松弯曲弹性模量的影响[J].林业工程学报,2014,28(04):38.
 GAO Shan,WANG Lihai,WANG Xiping.The influence of temperature and moisture contents on modulus of elasticity of Pinus koraicnsis wood[J].Journal of Forestry Engineering,2014,28(05):38.
[2]阮氏香江 张齐生 蒋身学.竹集成材高频热压胶合工艺及性能研究[J].林业工程学报,2014,28(04):109.
 Nguyen Thi Huong Giang,ZHANG Qisheng,JIANG Shenxue.Technology of glued laminated bamboo laminated in high frequency hot press and the properties[J].Journal of Forestry Engineering,2014,28(05):109.
[3]王佩,黄思维,张芮,等.杨木不同纹理方向介电特性初步探究[J].林业工程学报,2015,29(02):99.[doi:10.13360/j.issn.1000-8101.2015.02.024]
 WANG Pei,HUANG Siwei,ZHANG Rui,et al.Preliminary study on dielectric properties of poplar in different grain directions[J].Journal of Forestry Engineering,2015,29(05):99.[doi:10.13360/j.issn.1000-8101.2015.02.024]
[4]卢晓宁,何倩,姚有涛,等.两种国际通用乒乓球拍底板木材的固有频率及其影响因素[J].林业工程学报,2016,1(01):16.[doi:10.13360/j.issn.2096-1359.2016.01.003]
 LU Xiaoning,HE Qian,YAO Youtao,et al.The study of the natural frequency and its impact factors of two types of international common wood for table tennis racket blade[J].Journal of Forestry Engineering,2016,1(05):16.[doi:10.13360/j.issn.2096-1359.2016.01.003]
[5]程曦依,李贤军*,黄琼涛,等.木材干燥后养生期间含水率及应力变化特点[J].林业工程学报,2016,1(02):38.[doi:10.13360/j.issn.2096-1359.2016.02.007]
 CHENG Xiyi,LI Xianjun*,HUANG Qiongtao,et al.The study of moisture content and inner stress variation of kiln-dried wood during equalization treatment[J].Journal of Forestry Engineering,2016,1(05):38.[doi:10.13360/j.issn.2096-1359.2016.02.007]
[6]江京辉,于争争,赵丽媛,等.低温环境下桦木顺纹抗压强度的研究[J].林业工程学报,2017,2(04):30.[doi:10.13360/j.issn.2096-1359.2017.04.005]
 JIANG Jinghui,YU Zhengzheng,ZHAO Liyuan,et al.Study on compression strength parallel to grain of birch wood at low temperature[J].Journal of Forestry Engineering,2017,2(05):30.[doi:10.13360/j.issn.2096-1359.2017.04.005]
[7]刘晓辉.热塑性树脂胶合板板坯热压过程中影响温度变化的主要因素[J].林业工程学报,2018,3(02):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]
 LIU Xiaohui.The main factors affecting temperature change of mat during the manufacturing process of thermoplastic resin plywood[J].Journal of Forestry Engineering,2018,3(05):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]
[8]徐群,徐华东*,狄亚楠,等.探针插入深度对时域反射法反演白桦树干含水率精度的影响[J].林业工程学报,2019,4(04):120.[doi:10.13360/j.issn.2096-1359.2019.04.018]
 XU Qun,XU Huadong*,DI Yanan,et al.Investigation of the effect of probe insert depth on inversion accuracy of moisture content of Betula platyphylla Suk.standing trees using time domain reflectometry[J].Journal of Forestry Engineering,2019,4(05):120.[doi:10.13360/j.issn.2096-1359.2019.04.018]

备注/Memo

备注/Memo:
收稿日期:2018-12-22 修回日期:2019-02-01
基金项目:国家自然科学基金(31700487); 江苏省自然科学基金(BK20170926)。
作者简介:詹天翼,男,讲师,研究方向为木材物理学。通信作者:张耀丽,女,教授。E-mail:tyzhan@njfu.edu.cn
更新日期/Last Update: 2019-09-10