[1]赵阅书,薛晓明*,宋小娇,等.6种阔叶树材红外光谱特征的比较[J].林业工程学报,2019,4(05):40-45.[doi:10.13360/j.issn.2096-1359.2019.05.006]
 ZHAO Yueshu,XUE Xiaoming*,SONG Xiaojiao,et al.Comparison and analysis of FT-IR spectra for six broad-leaved wood species[J].Journal of Forestry Engineering,2019,4(05):40-45.[doi:10.13360/j.issn.2096-1359.2019.05.006]
点击复制

6种阔叶树材红外光谱特征的比较()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
40-45
栏目:
木材科学与技术
出版日期:
2019-09-16

文章信息/Info

Title:
Comparison and analysis of FT-IR spectra for six broad-leaved wood species
文章编号:
2096-1359(2019)05-0040-06
作者:
赵阅书1薛晓明1*宋小娇1南程慧1陈润琨2王艺3
1.南京森林警察学院,野生动植物物证技术国家林业和草原局重点实验室,南京 210023; 2.广西壮族自治区森林公安局,南宁 530022; 3.惠安县公安局,福建 惠安 362199
Author(s):
ZHAO Yueshu1 XUE Xiaoming1* SONG Xiaojiao1 NAN Chenghui1 CHEN Runkun2 WANG Yi3
1.Key Laboratory of National Forestry and Grassland Administration on Wildlife Evidence Technology, Nanjing Forest Police College, Nanjing 210023, China; 2.Guangxi Zhuang Autonomous Region Forest Public Security Bureau, Nanning 530022,China; 3.Public Security Bureau of Huian County, Huian 362199, Fujian, China
关键词:
木材快速鉴定 阔叶树材 傅里叶红外光谱 二阶导数光谱 吸收峰
Keywords:
rapid identification of wood broad-leaved wood Fourier transform infrared spectroscopy second derivative spectroscopy absorption peak
分类号:
S781.1; S792
DOI:
10.13360/j.issn.2096-1359.2019.05.006
文献标志码:
A
摘要:
采用红外光谱(FT-IR)法对6种阔叶树材进行研究,通过对共有吸收峰、特征峰、相对吸收强度和二阶导数谱进行比较分析,得出了6种阔叶树材的具体差异。试验结果表明:6种阔叶树材的红外图谱共性特征较为明显,1 000~4 000 cm-1范围内的14个吸收峰中有12个吸收峰为共有峰; 其中最强峰分别为1 033~1 052 cm-1范围内的C—O伸缩振动吸收峰和3 394~3 412 cm-1范围内的羟基特征峰。6种阔叶树材的FT-IR图谱、相对吸收强度和二阶导数谱均有不同程度的差异:在1 110~1 122 cm-1范围内只有楠木出现较小吸收峰; 楠木和杜仲在1 237~1 264 cm-1范围内形成较宽吸收峰; 1 624~1 657 cm-1范围内,杜仲、花榈木、凹叶厚朴这3种木材具有一定的差异; 而枫香和喜树在1 559~1 648 cm-1范围内明显区别于其他4个树种。相对吸收强度的比较结果为A3 402/A1 510和A1 661/A1 510处的2个峰位的差别较大; 在1 000~1 800 cm-1区域内,6个树种的红外光谱的二阶导数谱在从峰形、吸收峰的位置、形状以及出峰数量上存在显著差异。通过对6种常见阔叶树材红外光谱特征的比较和分析,可为木材的快速鉴定和分类提供理论依据。
Abstract:
Six broad-leaved wood species were analyzed using the Fourier transform infrared spectroscopy(FT-IR).In this research, the comparison and analysis were carried out among common absorption peaks, characteristic peaks, relative absorption intensity and second derivative spectra.All the results showed that the common features of the infrared spectrum of the six broad-leaved wood species were obvious.There were 14 absorption peaks in the range of 1 000-4 000 cm-1, twelve of which served as common peaks.In addition, there were two strongest peaks, including the C—O stretching vibration absorption peak in the range of 1 033-1 052 cm-1 and the hydroxyl characteristic peak in the range of 3 394-3 412 cm-1.Moreover, varying degrees of differences were demonstrated in the FT-IR spectra, the relative absorption intensities and the second derivative spectra of those six broad-leaved wood species.For instances, in the range of 1 110-1 122 cm-1, only Phoebe zhennan showed a small absorption peak, Phoebe zhennan and Eucommia ulmoides would form a broad absorption peak in the range of 1 237-1 264 cm-1, certain differences existed in Eucommia ulmoides, Ormosia henryi and Magnolia officinalis in the range of 1 624-1 657 cm-1, and the Liquidambar and Camptotheca were distinct from the other 4 species in the range of 1 559-1 648 cm-1.In addition, the comparison of relative absorption intensity showed a relatively large difference between the two peak positions at A3 402/A1 510 and A1 661/A1 510.Furthermore, the second-order derivative spectrum of the infrared spectrum of the six tree species in the 1 000-1 800 cm-1 region was significantly different from the peak shape, the position of the absorption peak, and the number of peaks.The comparison and analysis of six common broad-leaved tree species could provide theoretical basis for rapid identification and classification of wood.

参考文献/References:

[1] 孙海军, 徐莉, 蒋玲.红外光谱技术在我国木材科学领域的应用研究进展[J].江苏林业科技, 2016, 43(2): 44-47.DOI: 10.3969/j.issm.1001-7380.2016.02.013.
SUN H J, XU L, JIANG L.Application of infrared spectroscopy technique in wood science research: a review[J].Journal of Jiangsu Forestry Science & Technology, 2016, 43(2): 44-47.
[2] 朱莉, 石江涛.红松应力木木材形成组织的化学组成特征分析[J].植物研究, 2012, 32(2): 232-236.DOI: 10.1007/As11783-011-0280-z.
ZHU L, SHI J T.Chemical compound characteristic analysis of wood forming tissue from reaction wood of Pinus koraiensis[J].Plant Research, 2012, 32(2): 232-236.
[3] 杨忠, 江泽慧, 费本华, 等.近红外光谱技术及其在木材科学中的应用[J].林业科学, 2005, 41(4): 177-183.DOI: 10.11707/J.1001-7488.20050430.
YANG Z, JIANG Z H, FEI B H, et al.Application of near infrared(NIR)spectroscopy to wood science[J].Forestry Science,2005,41(4): 177-183.
[4] 孙柏玲.基于红外光谱的慈竹材性预测及竹原纤维识别研究[D].北京: 中国林业科学研究院, 2012.
SUN B L.Application of near and mid-infrared spectroscopy to predict bamboo properties and identify natural bamboo fiber for Neosinocalamus affinis Keng[D].Beijing: Chinese Academy of Forestry Sciences, 2012.
[5] 王学顺, 孙一丹, 黄安民.木材红外光谱的树种识别研究[J].森林工程, 2015, 31(6): 65-70.DOI: 10.3969/j.issn.1001-005X.2015.06.014.
WANG X S, SUN Y D, HUANG A M.Research on infrared spectrum for timber species identification[J].Forest Engineering, 2015, 31(6): 65-70.
[6] 薛晓明, 谢春平, 孙小苗, 等.樟和楠木的木材解剖结构特征和红外光谱比较研究[J].四川农业大学学报, 2016, 34(2): 178-184.DOI: 10.16036/j.issn.1000-2650.2016.02.009.
XUE X M, XIE C P, SUN X M, et al.Comparason on anatomical structure and FTIR spectra between Cinnamomum camphora and Phoebe zhennan woods[J].Journal of Sichuan Agricultural University, 2016, 34(2): 178-184.
[7] 薛晓明, 赵阅书.基于红外光谱的2种黄檀属木材识别探讨[J].浙江林业科技, 2017, 37(6): 63-68.DOI: 10.3969/j.issn.1001-3776.2017.06.011.
XUE X M, ZHAO Y S.Identification of two species of Dalbergiaby fourier transform infrared spectroscopy[J].Forestry Science and Technology in Zhejiang, 2017, 37(6): 63-68.
[8] 赵佳, 刘雪峰, 林海波, 等.FTIR法研究蜜环菌降解前后榛子木材木质纤维素结构及成分的变化[J].西部林业科学, 2018, 2(1): 97-103.DOI: 10.16473/j.cnki.xblykx1972.2018.01.017.
ZHAO J, LIU X F, LIN H B, et al.FTIR analysis on the structure and compositions changes of lignocellulose of Corylus helerophylla segraded by Armillaria mellea[J].Forestry Science in Western China, 2018, 2(1): 97-103.
[9] 姜笑梅, 殷亚方, 刘波.木材树种识别技术现状、发展与展望[J].木材工业, 2010, 24(4): 36-39.DOI: 10.3969/j.issn.1001-8654.2010.04.011.
JIANG X M, YIN Y F, LIU B.Current status, development and prospect of wood identification technology[J].China Wood Industry, 2010, 24(4): 36-39.
[10] 王振宇, 邱墅, 何正斌, 等.基于TG-FTIR技术的圆柏心、边材热解研究[J].光谱学与光谱分析, 2017, 37(4): 1090-1094.DOI: 10.3964/j.issn.1000-0593(2017)04-1090-05.
WANG Z Y, QIU S, HE Z B, et al.Study of Sabina chinensis heartwood and sapwood pyrolysis with TG-FTIR analysis[J].Pectroscopy and Spectral Analysis, 2017, 37(4): 1090-1094.
[11] 薛晓明, 南程慧.7种针叶树材红外光谱(FT-IR)特征的比较与分析[J].安徽农业大学学报, 2016, 43(1): 88-93.DOI: 10.13610/j.cnki.1672-352x.20151224.023.
XUE X M, NAN C H.Comparison of FTIR spectra in seven conifer softwood samples[J].Journal of Anhui Agricultural University, 2016, 43(1): 88-93.
[12] 胡爱华, 邢世岩, 巩其亮.基于FT-IR的针阔叶材木质素和纤维素特性[J].东北林业大学学报, 2009, 37(9): 79-82.DOI: 10.3969/j.issn.1000-5382.2009.09.028.
HU A H, XING S Y, GONG Q L.Lignin and cellulose characteristics of different woods based on FTIR[J].Journal of Northeast Forestry University, 2009, 37(9): 79-82.
[13] PANDEY K K.A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J].Applied Polymer Science, 1999, 71: 1969-1975.DOI: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO; 2-D.
[14] COLOM X, CARRILLO F.Comparative study of wood samples of the northern area of Catalonia by FTIR[J].Journal of Wood Chemistry and Technology, 2005, 25(1/2): 1-11.DOI: 10.1081/WCT-200058231.
[15] 石江涛, 王丰, 骆嘉言.杂交鹅掌楸应力木解剖特征及光谱分析[J].南京林业大学学报(自然科学版), 2015, 39(3): 125-129.DOI: 10.3969/j.issn.1000-2006.2015.03.023.
SHI J T, WANG F, LUO J Y.Anatomical feature and spectroscopy of reaction wood in Liriodendron chinense × L.tulipifera[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3): 125-129.
[16] 庄琳, 黄群, 徐燕红.楠属和润楠属4种木材的红外光谱鉴别[J].福建林业科技, 2014,41(4): 21-25.DOI: 10.13428/j.cnki.fjlk.2014.04.005.
ZHUANG L, HUANG Q, XU Y H.Four kinds of Phoebe and Machilus wood infrared absorption apectrum identification[J].Journal of Fujian Forestry Science and Technology, 2014,41(4): 21-25.
[17] 李伦, 刘刚, 张川云, 等.FTIR结合统计分析对竹类植物的鉴别分类研究[J].光谱学与学谱分析, 2013, 33(12): 3221-3224.DOI: 10.3964/j.issn.1000-0593(2013)12-3221-05.
LI L, LIU G, ZHANG C Y, et al.Discrimination of bamboo using FTIR spectroscopy and statistical analysis[J].Pectroscopy and Spectral Analysis, 2013, 33(12): 3221-3224.

备注/Memo

备注/Memo:
收稿日期:2019-03-02 修回日期:2019-04-28
基金项目:中央高校基本科研业务费专项资金项目(LGYB201716); 江苏省自然科学基金(BK20181338); 江苏省公安厅厅级科技研究计划(2016KX027)。
作者简介:赵阅书,女,讲师,研究方向为刑事技术。通信作者:薛晓明,女,教授。E-mail:xuexm@nfpc.edu.cn.
更新日期/Last Update: 2019-09-10