[1]何海珊,潘质洪,梁永兵,等.不同结香方法白木香的解剖构造比较[J].林业工程学报,2019,4(05):54-59.[doi:10.13360/j.issn.2096-1359.2019.05.008]
 HE Haishan,PAN Zhihong,LIANG Yongbing,et al.Anatomy comparative study of Aquilaria sinensis in different agarwood induced methods[J].Journal of Forestry Engineering,2019,4(05):54-59.[doi:10.13360/j.issn.2096-1359.2019.05.008]
点击复制

不同结香方法白木香的解剖构造比较()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
54-59
栏目:
木材科学与技术
出版日期:
2019-09-16

文章信息/Info

Title:
Anatomy comparative study of Aquilaria sinensis in different agarwood induced methods
文章编号:
2096-1359(2019)05-0054-06
作者:
何海珊1潘质洪2梁永兵1罗蓓1邱坚1*
1.西南林业大学材料工程学院,昆明 650224; 2.中山职业技术学院,广东 中山 528400
Author(s):
HE Haishan1 PAN Zhihong2 LIANG Yongbing1 LUO Bei1 QIU Jian1*
1.College of Material Science and Engineering, Southwest Forestry University, Kumming 650224, China; 2.Zhongshan Polytechnic, Zhongshan 528400, Guangdong, China
关键词:
白木香 结香方法 解剖构造 木间韧皮部 沉香
Keywords:
Aquilaria sinensis(Lour.)Spreng agarwood induced method anatomy structure interxylary phloem agarwood
分类号:
S781.1
DOI:
10.13360/j.issn.2096-1359.2019.05.008
文献标志码:
A
摘要:
白木香(Aquilaria sinensis)为沉香来源树种,在我国亚热带地区作为珍贵树种广泛种植,但因目前人工结香产量及质量不高,沉香产业发展受到极大限制。为研究白木香结香生理过程,开发白木香人工结香技术,对打孔火烙法、剥皮法、虫蛀、化学试剂A法的结香样品进行解剖观察,发现深色次生代谢产物、再生组织、胼胝质、晶体等的形成与分布存在差异。所有方法中仅化学试剂A形成的次生代谢产物沉积(结香)区域呈块状,其余方法形成的结香区呈薄层状或点状或束状。结香区域化学试剂A>伤及木质部的剥皮法/打孔火烙法>新鲜虫蛀>不伤及木质部的环剥树皮法。初步估计化学试剂A的结香量最大,但由于深色次生代谢产物在细胞腔的富集量不同,需结合含量测定及化学分析进一步判断。研究发现不同结香方法结香后木间韧皮部边缘1~2层薄壁细胞均无深色次生代谢产物沉积。打孔火烙法和两种不同程度剥皮法均刺激白木香形成再生组织,再生组织是否由IP分化而来还有待进一步研究; 化学试剂A刺激未造成白木香形成再生组织且未见明显木质化,成功避免了阻隔层的形成,因此可形成块状结香区域; 虫蛀样品可能因创伤时间较短而尚未形成再生组织,但沉香层木间韧皮部中的细胞明显木质化。新蛀虫口处胼胝质堆积,说明胼胝质参与了创伤防御反应。
Abstract:
Agarwood is mainly obtained from Aquilaria sinensis (Lour.)Spreng, which is widely planted as precious tree species in subtropical areas of China.However, the development of the agarwood industry is significant restricted, mainly due to the low production efficiency and poor product quality caused by the current garwood induced technology.To learn the physiological process of induced agarwood in A.sinensis and help to develop artificial agarwood induced technology, anatomy of A.sinensis using several agarwood induced methods, which included the scorched holing method, bark peeling method, insect larvae gnawed and chemical reagent A induced method, were analyzed.It was found that the differences of formation and distribution were observed between different methods, including the dark secondary metabolites deposition, regenerated tissue formation, callose deposition, crystal distribution, etc.Among all methods, only chemical reagent A induced method resulted in blocky deposited area of dark secondary metabolites(agarwood formation), while other methods resulted in thin layered area, fasciculate area or punctate area.The comparison of agarwood formation areas showed that the chemical reagent A induced method > bark peeling method with xylem injured/scorched holing method > fresh insect larvae gnawed > bark peeling method without scathed xylem.It was preliminarily estimated that the chemical reagent A method resulted in largest agarwood formation area.However, due to the different deposition amount of dark secondary metabolites in the single cell cavity, it was needed to be further determined refer to the extraction of content determination and chemical analysis.It was indicated that resin did not deposit in the edge 1 or 2 cells of the interxylary phloem in different induced methods.The scorched holing method and two degree bark peeling method stimulated the dedifferentiation of A.sinensis to form regenerated tissue, it was worthy of being further studied that whether the interxylary phloem formed regenerated tissue; chemical reagent A method resulted in no dedifferentiation of A.sinensis to form regenerated tissue and no obvious lignification, avoided forming barrier zone, hence to form blocky agarwood area.The insect larvae gnawed hole did not resulted in regenerated tissue formation, which could be due to the short time of wounding, but some cells in the interxylary phloem of agarwood layer were distinctly lignified.Callose accumulation increased near hole of fresh insect larvae gnawn hole, indicating that the callose of the interxylary phloem was involved in the process of the traumatic stress response.

参考文献/References:

[1] 国家药典委员会.中华人民共和国药典: 一部[M].北京: 中国医药科技出版社,2015: 185-186.
China Pharmacopoeia Committee.Pharmacopoeia of the people's republic of China: I[M].Beijing: China Medical Science Press, 2015: 185-186.
[2] 刘鹏, 高慎淦, 陈念, 等.沉香资源与利用研究进展[J].时珍国医国药, 2013, 24(3): 734-737.DOI: 10.3969/j.issn.1008-0805.2013.03.103.
LIU P, GAO S J, CHEN N, et al.Studies on the resources and applications of agarwood[J].Lishizhen Medicine and Materia Medica Research, 2013, 24(3): 734-737.
[3] 郑科, 陈鹏, 郭永清.印度尼西亚结香植物种质资源及沉香人工结香技术与借鉴[J].世界林业研究, 2016, 29(1): 86-90.DOI: 10.3969/j.issn.1008-0805.2013.03.103.
ZHENG K, CHEN P, GUO Y Q.Incense plant germplasms and its artificial production technology with Aquilaria tree in Indonesia[J].World Forestry Research, 2016,29(1): 86-90.
[4] 裴长洪, 吴滌心.传统文明向现代产业的历史跨越 中国沉香产业发展研究报告[M].北京: 中国社会科学出版社, 2017.
[5] 张玉秀, 刘培卫.木间韧皮部的定义、分布、发育和生理功能[J].湖北农业科学, 2015, 54(15): 3589-3592.DOI: 10.14088/j.cnki.issn0439-8114.2015.15.002.
ZHANG Y X, LIU P W.Intexylary phloem: definition, distribution, development and function[J].Hubei Agricultural Sciences, 2015, 54(15): 3589-3592.
[6] FAHN A.The development of the secondary body in plants with interxylary phloem[C]//Trend in Wood Research.Basel: Birkhäuser, 1985.
[7] CARLQUIST S.Interxylary phloem: diversity and functions[J].Brittonia, 2013, 65(4): 477-495.DOI: 10.1007/s12228-012-9298-1.
[8] RAO K R, DAYAL R.The secondary xylem of Aquilaria agallocha (Thymelaeaceae)and the formation of ‘Agar'[J].IAWA Journal, 1992, 13(2): 163-172.DOI: 10.1163/22941932-90001264.
[9] 张兴丽, 刘洋洋, 陈宏降, 等.白木香[Aquilaria sinensis (Lour.)Gilg] 的木质部结构及组织化学研究[J].山东大学学报(理学版), 2012, 47(7): 1-5.DOI: 10.6040/j.issn.1671-9352.2012.07.001.
ZHANG X L, LIU Y Y, CHEN H J, et al.Study on xylem structure and histochemistry in Aquilaria sinensis[J].Journal of Shandong University(Natural Science), 2012, 47(7): 1-5.
[10] LUO B, OU Y, PAN B, et al.The structure and development of interxylary and external phloem in Aquilaria sinensis[J].IAWA Journal, 2018, 39(1): 3-17.DOI: 10.1163/22941932-20170182.
[11] EVERT R F, EICHHORN S E.Esaus plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development[M].3rd ed.Hoboken: John Wiley & Sons, Inc., 2006.
[12] NEDUKHA O M.Callose: localization, functions, and synthesis in plant cells[J].Cytology and Genetics, 2015, 49(1): 49-57.DOI: 10.3103/S0095452715010090.
[13] SHI X, HAN X, LU T G.Callose synthesis during reproductive development in monocotyledonous and dicotyledonous plants[J].Plant Signaling & Behavior, 2016, 11(2):e1062196.DOI: 10.1080/15592324.2015.1062196.
[14] 刘培卫, 杨云, 张玉秀, 等.白木香结香过程中阻隔层的形成及其特性研究[J].中国现代中药, 2016, 36(5): 697-704.DOI: 10.7525/j.issn.1673-5102.2016.05.010.
LIU P W, YANG Y, ZHANG Y X, et al.Barrier zone formation inagarwood formation of Aquilaria sinensis[J].Bulletin of Botanical Research, 2016, 36(5): 697-704.
[15] LIU Y, CHEN H, YANG Y, et al.Whole-tree agarwood-inducing technique: an efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees[J].Molecules, 2013, 18(3): 3086-3106.DOI: 10.3390/molecules18033086.
[16] 斯蒂芬·帕拉帝.木本植物生理学[M].3版.北京: 科学出版社, 2011.
PALLARDY S G.Physiology of woody plants[M].3rd ed.Beijing: Science Press, 2011.
[17] 梅文莉, 左文健, 杨德兰, 等.沉香结香机理、人工结香及其化学成分研究进展[J].热带作物学报, 2013, 34(12): 2513-2520.DOI: 10.3969/j.issn.1000-2561.2013.12.039.
MEI W L, ZUO W J, YANG D L, et al.Advances in the mechanism, artificial agarwood-induction techniques and chemical constituents of artificial agarwood production[J].Chinese Journal of Tropical Crops, 2013, 34(12): 2513-2520.
[18] 李明月, 沈华杰, 何海珊, 等.白木香解剖构造及抽提物化学成分分析[J].西南林业大学学报, 2017, 37(5): 208-213.DOI: 10.11929/j.issn.2095-1914.2017.05.032.
LI M Y, SHEN H J, HE H S, et al.Anatomic structure and extracted chemical component content of Aquilaria sinensis[J].Journal of Southwest Forestry University, 2017, 37(5): 208-213.
[19] 顾小辉, 王国全, 周亚奎, 等.虫漏沉香的基本特征及其品质评价[J].中国现代中药, 2017, 19(8): 1064-1070.DOI: 10.13313/j.issn.1673-4890.2017.8.003.
GU X H, WANG G Q, ZHOU Y K, et al.Study on the characteristics and quality evaluation of agarwood induced by herbivorous insects[J].Modern Chinese Medicine, 2017, 19(8): 1064-1070.
[20] 顾小辉, 魏建和, 王国全, 等.虫害诱导植物合成防御性次生代谢产物的研究进展[J].生命科学研究, 2017, 21(5): 458-465.DOI: 10.16605/j.cnki.1007-7847.2017.05.016.
GU X H, WEI J H, WANG G Q, et al.Progresses on the defensive secondary metabolites induced by herbivorous insects in plants[J].Life Science Research, 2017, 21(5): 458-465.
[21] 曹瑞致, 张馨宇, 杨大伟, 等.剥皮对杜仲次生代谢物含量及伤害修复能力的影响[J].林业科学, 2017, 53(6): 151-158.DOI: 10.11707/j.1001-7488.20170618.
CAO R Z, ZHANG X Y, YANG D W, et al.Effects of different barking treatments on secondary metabolites of Eucommia ulmoides and its ability of repairing injury[J].Scientia Silvae Sinicae, 2017, 53(6): 151-158.

备注/Memo

备注/Memo:
收稿日期:2018-12-18 修回日期:2019-05-23
基金项目:国家自然科学基金(31570555)。
作者简介:何海珊,女,博士生,研究方向为木材解剖学。通信作者:邱坚,男,教授。E-mail: qiujianswfu@foxmail.com
更新日期/Last Update: 2019-09-10