[1]刘隽涵,孙建奎,肖领平,等.金属钼催化云杉制备松柏醇醚及全组分利用[J].林业工程学报,2019,4(05):78-83.[doi:10.13360/j.issn.2096-1359.2019.05.011]
 LIU Junhan,SUN Jiankui,XIAO Lingping,et al.Molybdenum-catalyzed fragmentation of Chinese spruce into coniferyl methyl ether and sequential utilization of total components[J].Journal of Forestry Engineering,2019,4(05):78-83.[doi:10.13360/j.issn.2096-1359.2019.05.011]
点击复制

金属钼催化云杉制备松柏醇醚及全组分利用()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
78-83
栏目:
林产化学加工
出版日期:
2019-09-16

文章信息/Info

Title:
Molybdenum-catalyzed fragmentation of Chinese spruce into coniferyl methyl ether and sequential utilization of total components
文章编号:
2096-1359(2019)05-0078-06
作者:
刘隽涵1孙建奎1肖领平2王波1宋国勇1*
1.北京林业大学材料科学与技术学院,林木生物质化学北京市重点实验室,北京 100083; 2.大连工业大学轻工与化学工程学院,辽宁省制浆造纸工程重点实验室,大连 116034
Author(s):
LIU Junhan1 SUN Jiankui1 XIAO Lingping2 WANG Bo1 SONG Guoyong1*
1.Beijing Key Laboratory of Lignocellulosic Chemistry, College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; 2.Liaoning Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
关键词:
金属钼催化剂 云杉 松柏醇醚 木质素 全组分利用
Keywords:
molybdenum catalyst Chinese spruce coniferyl methyl ether lignin total component utilization
分类号:
TQ35
DOI:
10.13360/j.issn.2096-1359.2019.05.011
文献标志码:
A
摘要:
木质纤维由纤维素、半纤维素和木质素组成,是地球上最丰富的可再生碳氢资源。作为生物质的主要组分之一,木质素是唯一一种可再生的芳香化合物原料。木质素通过降解转化为苯酚单体化合物是实现木质素高值化的应用基础。笔者利用具有纳米尺度的MoOx/SBA-15催化剂开展了云杉木质纤维的还原催化分离研究,实现了木质素组分优先降解为松柏醇醚的过程。结果表明:云杉在甲醇体系中催化还原降解反应的最佳条件为温度240 ℃、反应时间2 h、常压氮气氛围、甲醇作为溶剂及氢供体。在最佳条件下,木质素经过降解转化为高附加值的松柏醇甲醚,基于木质素质量计算的转化率可达13.5%,该产物可通过简单的硅胶柱层析法实现分离纯化。反应后的固体残渣中,纤维素和半纤维素组分保留率分别达到98%和92%,可分别通过酶催化及酸催化高效转化为葡萄糖和木糖。由此可知,以MoOx/SBA-15作为催化剂不仅可以有效地将木质素催化降解为易于进一步功能化的不饱和单体产物松柏醇甲醚,还可以实现生物质组分分离,得到容易酶解的碳水化合物组分,从而有利于实现生物质的全组分利用。
Abstract:
As the most abundant renewable resource on earth, lignocellulosic biomass is mainly composed of cellulose, hemicellulose and lignin, which is a useful supplement and natural substitute for fossil hydrocarbon resources.As one of the main components of biomass, lignin is the only renewable aromatic compound.It can be converted to phenol monomer compounds that are suitable for downstream intensive processing.However, the current biomass refining industry mainly focuses on the conversion and utilization of carbohydrates, and the common pretreatment methods are achieved through the removal and stripping of lignin, such as soda and Kraft pulping process.In recent years, a “lignin first” reductive catalytic separation(RCF)scheme has become a new strategy for the efficient degradation of lignin and the separation and utilization of biomass components.By this method, biomass raw materials were directly treated by metal catalytic system, and lignin components were preferentially degraded into phenolic monomers, while carbohydrate components did not participate in the reaction and were retained for subsequent conversion and utilization.In this paper, we reported herein the case of a supported molybdenum catalyst MoOx/SBA-15 that functions as an efficient and selective catalyst for the fragmentation of Chinese spruce.The fragmentation reaction gave coniferyl methyl ether in high yields with high selectivity through depolymerization of lignin component preferentially and allowed the well-reservation of(hemi)cellulose.The results showed that the optimum conditions for catalytic degradation of spruce were 240 ℃, N2 atmosphere for 2 h, methanol as solvent and hydrogen donor.Under the optimal conditions, 13.5%(wt%)of coniferyl methyl ether could be generated and isolated via silica gel chromatography in a pure fashion.High retentions of cellulose and hemicellulose were obtained in 98% and 92%, respectively, and could be efficiently transferred into glucose and xylose via enzymatic and acidic catalysis, respectively.Therefore, MoOx/SBA-15 as a catalyst can not only effectively degrade lignin into pine cyperol methyl ether, an unsaturated monomer product which is easy to be further functionalized, but also facilitate the separation of biomass components and obtain carbohydrate components to be enzymatically hydrolyzed.The present method provided an economical pathway for lignin valorization as well as fractionation and sequential utilization of all the biomass components.

参考文献/References:

[1] 黄曹兴, 何娟, 梁辰, 等.木质素的高附加值应用研究进展[J].林业工程学报, 2019, 4(1): 17-26.DOI.10.13360/j.issn.2096-1359.2019.01.003.
HUANG C X, HE J, LIANG C, et al.Progress in applications of high value-added lignin materials[J].Journal of Forestry Engineering, 2019, 4(1): 17-26.
[2] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, et al.Lignin valorization: improving lignin processing in the biorefinery[J].Science, 2014, 344(6185): 1246843.DOI.10.1126/science.1246843.
[3] 文甲龙, 陈天影, 孙润仓.生物质木质素分离和结构研究方法进展[J].林业工程学报, 2017, 2(5): 76-84.DOI.10.13360/j.issn.2096-1359.2017.05.014.
WEN J L, CHEN T Y, SUN R C, et al.Research progress on separation and structural analysis of lignin in lignocellulosic biomass[J].Journal of Forestry Engineering, 2017, 2(5): 76-84.
[4] ZAKZESKI J, BRUIJNINCX P C, JONGERIUS A L, et al.The catalytic valorization of lignin for the production of renewable chemicals[J].Chemical Reviews, 2010, 110(6): 3552-3599.DOI.10.1021/cr900354u.
[5] SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, et al.Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J].Science, 2016, 354(6310): 329-333.DOI.10.1126/science.aaf7810.
[6] SUN Z, FRIDRICH B L, DE SANTI A, et al.Bright side of lignin depolymerization: toward new platform chemicals[J].Chemical Reviews, 2018, 118(2): 614-678.DOI.10.1021/acs.chemrev.7b00588.
[7] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, et al.Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J].Chemical Society Reviews, 2018, 47(3): 852-908.DOI.10.1039/c7cs00566k.
[8] RENDERS T, VAN DEN BOSCH S, KOELEWIJN S-F, et al.Lignin-first biomass fractionation: the advent of active stabilisation strategies[J].Energy & Environmental Science, 2017, 10(7): 1551-1557.DOI.10.1039/c7ee01298e.
[9] VAN DEN BOSCH S, SCHUTYSER W, VANHOLME R, et al.Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps[J].Energy & Environmental Science, 2015, 8(6): 1748-1763.DOI.10.1039/c5ee00204d.
[10] VAN DEN BOSCH S, SCHUTYSER W, KOELEWIJN S-F, et al.Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J].Chemical Communications, 2015, 51(67): 13158-13161.DOI.10.1039/c5cc04025f.
[11] KUMANIAEV I, SUBBOTINA E, SÄVMARKER J, et al.Lignin depolymerization to monophenolic compounds in a flow-through system[J].Green Chemistry, 2017, 19(24): 5767-5771.DOI.10.1039/c7gc02731a.
[12] ANDERSON E M, STONE M L, KATAHIRA R, et al.Flowthrough reductive catalytic fractionation of biomass[J].Joule, 2017, 1(3): 613-622.DOI.10.1016/j.joule.2017.10.004.
[13] XIAO L-P, WANG S, LI H, et al.Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J].ACS Catalysis, 2017, 7(11): 7535-7542.DOI.10.1021/acscatal.7b02563.
[14] WANG S, GAO W, LI H, et al.Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst[J].ChemSusChem, 2018, 11(13): 2114-2123.DOI.10.1002/cssc.201800455.
[15] SUN J, LI H, XIAO L-P, et al.Fragmentation of woody lignocellulose into primary monolignols and their derivatives[J].ACS Sustainable Chemistry & Engineering, 2019, 7, 4666-4674.DOI.10.1021/acssuschemeng.8b04032.
[16] ZANOROTTI A.Synthesis and reactivity of vinyl quinone methides[J].The Journal of Organic Chemistry, 1985, 50(7): 941-945.DOI.10.1021/jo00207a006.
[17] SLUITER A, HAMES B, RUIZ R, et al.Determination of structural carbohydrates and lignin in biomass[M].Laboratory Analytical Procedure, 2008.
[18] LANCEFIELD C S, OJO O S, TRAN F, et al.Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin[J].Angewandte Chemie International Edition, 2015, 127(1): 260-264.DOI.10.1002/ange.201409408.

备注/Memo

备注/Memo:
收稿日期:2019-02-17 修回日期:2019-04-30
基金项目:国家自然科学基金(21776020)。
作者简介:刘隽涵,男,研究方向为生物质催化转化研究。 通信作者:宋国勇,男,教授。E-mail: songg@bjfu.edu.cn
更新日期/Last Update: 2019-09-10