参考文献/References:
[1] TARASCON J M, M ARMAND.Issues and challenges facing rechargeable lithium batteries[J].Nature, 2001, 414(6861):359-367.DOI:10.1038/35104644.
[2] ARMAND M, TARASCON J M.Building better batteries[J].Nature, 2008, 451(7179):652-657.DOI:10.1038/451652a.
[3] KIM S, HWANG C, PARK S Y, et al.High-yield synthesis of single-crystal silicon nanoparticles as anode materials of lithium ion batteries via photosensitizer-assisted laser pyrolysis[J].Journal of Materials Chemistry A, 2014, 2(42):18070-18075.DOI:10.1039/c4ta03358b.
[4] ZUO X X, ZHU J, MÜLLER-BUSCHBAUM P, et al.Silicon based lithium-ion battery anodes: a chronicle perspective review[J].Nano Energy, 2017, 31:113-143.DOI:10.1016/j.nanoen.2016.11.013.
[5] BEAULIEU L Y, EBERMAN K W, TURNER R L, et al.Colossal reversible volume changes in lithium alloys[J].Electrochemical and Solid State Letters, 2001, 4(9):A137-A140.DOI:10.1149/1.1388178.
[6] LUO F, CHU G, XIA X X, et al.Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries[J].Nanoscale, 2015, 7(17): 7651-7658.DOI:10.1039/c5nr00045a.
[7] LI H.The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J].Solid State Ionics, 2000, 135(1/2/3/4):181-191.DOI:10.1016/s0167-2738(00)00362-3.
[8] ZHANG Y, ZHU Y S, FU L J, et al.Si/C composites as negative electrode for high energy lithium ion batteries[J].Chinese Journal of Chemistry, 2017, 35(1):21-29.DOI:10.1002/cjoc.201600663.
[9] CHEN T, WU J, ZHANG Q L, et al.Recent advancement of SiOx based anodes for lithium-ion batteries[J].Journal of Power Sources, 2017, 363:126-144.DOI:10.1016/j.jpowsour.2017.07.073.
[10] KOHANDEHGHAN A, CUI K, KUPSTA M, et al.Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes[J].Journal of Materials Chemistry A, 2014, 2(29): 11261.DOI:10.1039/c4ta00993b.
[11] KIM H, HAN B, CHOO J, et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angewandte Chemie International Edition, 2008, 47(52):10151-10154.DOI:10.1002/anie.200804355.
[12] HODSON M J, WHITE P J, MEAD A, et al.Phylogenetic variation in the silicon composition of plants[J].Annals of Botany, 2005, 96(6):1027-1046.DOI:10.1093/aob/mci255.
[13] CURRIE H A, PERRY C C.Silica in plants: biological, biochemical and chemical studies[J].Annals of Botany, 2007, 100(7):1383-1389.DOI:10.1093/aob/mcm247.
[14] LIU J, KOPOLD P, VAN AKEN P A, et al.Energy storage materials from nature through nanotechnology: a sustainable Route from reed plants to a silicon anode for lithium-ion batteries[J].Angewandte Chemie International Edition, 2015, 54(33):9632-9636.DOI:10.1002/anie.201503150.
[15] KIM W S, HWA Y, SHIN J H, et al.Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries[J].Nanoscale, 2014, 6(8):4297.DOI:10.1039/c3nr05354g.
[16] LIU N, HUO K F, MCDOWELL M T, et al.Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes[J].Scientific Reports, 2013, 3:1919.DOI:10.1038/srep01919.
[17] CHAKRAVERTY A, MISHRA P, BANERJEE H D.Investigation of combustion of raw and acid-leached rice husk for production of pure amorphous white silica[J].Journal of Materials Science, 1988, 23(1):21-24.DOI:10.1007/bf01174029.
[18] KIM H, HAN B, CHOO J, et al.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J].Angewandte Chemie International Edition, 2008, 47(52):10151-10154.DOI:10.1002/anie.200804355.
[19] NIE P, LIU X Y, FU R R, et al.Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries[J].ACS Energy Letters, 2017, 2(6):1279-1287.DOI:10.1021/acsenergylett.7b00286.
[20] WANG J, RAN R, SUNARSO J, et al.Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels[J].Journal of Power Sources, 2017, 347:259-269.DOI:10.1016/j.jpowsour.2017.02.072.
[21] NG S H, WANG J Z, WEXLER D, et al.Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries[J].The Journal of Physical Chemistry C, 2007, 111(29):11131-11138.DOI:10.1021/jp072778d.
[22] ZUO P J, YIN G P, MA Y L.Electrochemical stability of silicon/carbon composite anode for lithium ion batteries[J].Electrochimica Acta, 2007, 52(15):4878-4883.DOI:10.1016/j.electacta.2006.12.061.
[23] MEIER C, LÜTTJOHANN S, KRAVETS V G, et al.Raman properties of silicon nanoparticles[J].Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32(1/2):155-158.DOI:10.1016/j.physe.2005.12.030.
[24] QIE L, CHEN W M, XU H H, et al.Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors[J].Energy & Environmental Science, 2013, 6(8):2497.DOI:10.1039/c3ee41638k.
[25] HOROWITZ Y, HAN H L, ROSS P N, et al.In situ potentiodynamic analysis of the Electrolyte/Silicon electrodes interface reactions-a sum frequency generation vibrational spectroscopy study[J].Journal of the American Chemical Society, 2016, 138(3):726-729.DOI:10.1021/jacs.5b10333.
[26] YUE C, YU Y J, WU Z G, et al.Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays[J].Nanoscale, 2014, 6(3):1817-1822.DOI:10.1039/c3nr05181a.
相似文献/References:
[1]雷洪,杜官本*.生物质木材胶黏剂的研究进展[J].林业工程学报,2012,26(03):7.
[2]邹局春,郑志锋,张宏健,等.生物质苯酚液化产物在模塑材料中的应用[J].林业工程学报,2007,21(02):15.
[3]刘石彩,邓先伦,童娅娟,等.成型炭生产过程中气、固产物特性及利用[J].林业工程学报,2007,21(05):60.
[4]周建斌,周秉亮,马欢欢,等.生物质气化多联产技术的集成创新与应用[J].林业工程学报,2016,1(02):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
ZHOU Jianbin,ZHOU Bingliang,MA Huanhuan,et al.Integrated innovation and application of biomass
gasification poly-generation technology[J].Journal of Forestry Engineering,2016,1(05):1.[doi:10.13360/j.issn.2096-1359.2016.02.001]
[5]李震,吴家雄.基于平模温度场的疲劳寿命分析[J].林业工程学报,2016,1(02):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
LI Zhen,WU Jiaxiong.Fatigue life analysis based on the temperature field of flat die[J].Journal of Forestry Engineering,2016,1(05):96.[doi:10.13360/j.issn.2096-1359.2016.02.017]
[6]李震,赵钰龙,吴家雄,等.平模成型机结构参数对成型过程的影响*[J].林业工程学报,2017,2(01):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]
LI Zhen,ZHAO Yulong,WU Jiaxiong,et al.Influence of structural parameters on flat mould plate[J].Journal of Forestry Engineering,2017,2(05):113.[doi:10.13360/j.issn.2096-1359.2017.01.020]
[7]崔勇,常建民,王文亮.玻璃纤维增强塑料用热解油-酚醛树脂的合成工艺[J].林业工程学报,2017,2(06):67.[doi:10.13360/j.issn.2096-1359.2017.06.012]
CUI Yong,CHANG Jianmin,WANG Wenliang.Synthesis process of bio-oil phenolic resin used for glass-fiber reinforced plastic[J].Journal of Forestry Engineering,2017,2(05):67.[doi:10.13360/j.issn.2096-1359.2017.06.012]
[8]纪拓,朱家华*.碳化木负载聚苯胺型微波响应催化剂用于高效5-甲基糠醛合成(英文)[J].林业工程学报,2019,4(01):59.[doi:10.13360/j.issn.2096-1359.2019.01.009]
JI Tuo,ZHU Jiahua*.Natural wood templated polyaniline catalysts for
energy efficient saccharide-HMF conversion[J].Journal of Forestry Engineering,2019,4(05):59.[doi:10.13360/j.issn.2096-1359.2019.01.009]
[9]宋国勇.“木质素优先”策略下林木生物质组分催化分离与转化研究进展[J].林业工程学报,2019,4(05):1.[doi:10.13360/j.issn.2096-1359.2019.05.001]
SONG Guoyong.The development of catalytic fractionation and conversion of lignocellulosic biomass under lignin-first strategy[J].Journal of Forestry Engineering,2019,4(05):1.[doi:10.13360/j.issn.2096-1359.2019.05.001]