[1]杨政,贾付华,张蕤*.层状α-磷酸锆的有机改性及其与聚乳酸复合材料研究[J].林业工程学报,2019,4(05):100-106.[doi:10.13360/j.issn.2096-1359.2019.05.014]
 YANG Zheng,JIA Fuhua,ZHANG Rui*.Modification of layered α-zirconium phosphate and its application in poly(lactic acid)/ α-zirconium phosphate composites[J].Journal of Forestry Engineering,2019,4(05):100-106.[doi:10.13360/j.issn.2096-1359.2019.05.014]
点击复制

层状α-磷酸锆的有机改性及其与聚乳酸复合材料研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年05期
页码:
100-106
栏目:
生物质能源与材料
出版日期:
2019-09-16

文章信息/Info

Title:
Modification of layered α-zirconium phosphate and its application in poly(lactic acid)/ α-zirconium phosphate composites
文章编号:
2096-1359(2019)05-0100-07
作者:
杨政1贾付华1张蕤12*
1.南京林业大学化学工程学院,南京 210037; 2.南京林业大学, 江苏省林业资源高效加工利用协同创新中心,南京 210037
Author(s):
YANG Zheng1 JIA Fuhua1 ZHANG Rui12*
1.College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Co-InnovationCenter of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
关键词:
生物聚酯 α-磷酸锆(MZrP) 聚乳酸 插层 纳米复合材料 改性
Keywords:
biopolyester α-zirconium phosphate(MZrP) poly(lactic acid) intercalation nanocomposites modification
分类号:
TB324
DOI:
10.13360/j.issn.2096-1359.2019.05.014
文献标志码:
A
摘要:
通过对层状α-磷酸锆进行二次改性,制备具有力学性能改善的聚乳酸复合材料。首先合成一种新型阳离子插层剂十一烷醇三甲基溴化铵(UHTB),并将其用于层状化合物α-磷酸锆(α-ZrP)的改性,制备得到UHTB与α-ZrP杂化物(UHTB-ZrP),然后,利用丙交酯原位聚合对UHTB-ZrP进行表面接枝改性,得到二次改性层状α-MZrP,进而采用溶液浇铸法制备聚乳酸/有机改性α-磷酸锆复合材料(PLA/MZrP)。分别用红外光谱分析仪、激光粒度仪、X射线衍射仪、扫描电镜、透射电镜、旋转流变仪和热重分析仪等对层状α-ZrP的插层过程、微观结构以及PLA/MZrP复合材料的流变性能和热稳定性等进行表征与分析。结果表明:经过一次改性可获得层间距达到1.40 nm的UHTB-ZrP,经两步改性可获得层间距达3.80 nm的MZrP,这种纳米片层能均匀分散在PLA基体中形成纳米复合结构,并使其力学性能、加工性能和热稳定性得到改善。当添加质量分数为1% 的MZrP时,PLA/MZrP复合材料的拉伸强度从31.3 MPa提高到53.5 MPa,比纯PLA提高了70.9%,而复数黏度则随着MZrP含量的增加而显著降低。当添加质量分数为3%的MZrP时,在170 ℃10 Hz时其复数黏度从968.1 Pa·s降低到78.7 Pa·s,比纯PLA降低了91.9%。此外,添加少量的MZrP后,PLA/MZrP复合材料的热稳定性也得到一定的改善。
Abstract:
In this study, 1-undecaminium, 11-hydroxy-N,N,N-trimethyl-, bromide(UHTB)was synthesized and introduced into the gallery of α-zirconium phosphate(α-ZrP)as an novel cationic intercalated agent to prepare UHTB-ZrP hybrid compound by intercalation.The as-prepared UHTB-ZrP was further surface modified with DL-lactide by in-situ grafting polymerization to obtain organically modified α-zirconium phosphate(MZrP).Then, the biodegradable MZrP/ poly(lactic acid)(PLA)composites were prepared by solution casting method.The intercalating process, microstructure, rheological properties and thermal stability of PLA/MZrP composites were investigated by laser particle size analyzer, X-ray diffractometer, scanning electron microscope,transmission electron microscope, rheometer and thermogravimetric analyzer.The results confirmed that UHTB-ZrP with the interlayer spacing of 1.40 nm and MZrP with the interlayer spacing of 3.80 nm were obtained via two-step modification.It was also found that the MZrPnanosheets were well dispersed in PLA matrix with good compatibility, which could further improve the mechanical properties, processing properties and thermal stability of the resulting composites.The SEM and TEM analysis of MZrP and PLA/MZrP composites also confirmed the formation of layered α-ZrP.The thickness of α-ZrP sheets decreased after modification.No obvious separation at the interface between MZrP and PLA matrix such as extracting and stripping at the fracture interface were observed.The tensile strength of MZrP/PLA composites increased with the increase of MZrP content.When the content of MZrP reached 1 wt%, the tensile strength of the PLA/MZrP composite increased from 31.3 MPa to 53.5 MPa, which was higher than that of pure PLA.When the content of MZrP was more than 1 wt%, the tensile strength of PLA/MZrP composites decreased with the increase of MZrP content while the elongation at break decreased slightly for all composite samples.With the addition of MZrP, the complex viscosity of PLA/MZrP composites decreased continuously.When the MZrP content was about 3 wt%, the frequency complex viscosity of the composite decreased from 968.1 Pa·s to 78.7 Pa·s at 170 ℃ and 10 Hz, which was remarkable lower than that of pure PLA.At the same time, the thermal stability of the PLA/MZrP composites was slightly improved.

参考文献/References:

[1] WANG M, WU Y, LI Y D, et al.Progress in toughening poly(lactic acid)with renewable polymers[J].Polymer Reviews, 2017, 57(4):557-593.DOI:10.1080/15583724.2017.1287726.
[2] FARAH S, ANDERSON D G, LANGER R.Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review[J].Advanced Drug Delivery Reviews, 2016, 107: 367-392.DOI:10.1016/j.addr.2016.06.012.
[3] 包睿莹, 魏馨丰, 曹志强, 等.聚乳酸成型加工过程中的熔体粘弹特性和结晶行为调控[J].高分子通报, 2017(10): 96-106.DOI:10.14028/j.cnki.1003-3726.2017.10.010.
BAO R Y, WEI X F, CAO Z Q, et al.Tailoring the melt viscoelasticity and crystallization behavior of poly(lactic acid)during processing[J].Chinese Polymer Bulletin, 2017(10): 96-106.
[4] 黎航, 刘志鹏, 杨政, 等.有机蒙脱土协同壳聚糖基膨胀型阻燃剂阻燃聚乳酸研究[J].林业工程学报, 2017, 2(4):77-83.DOI:10.13360/j.issn.2096-1359.2017.04.013.
LI H, LIU Z P, YANG Z, et al.Synergistic effect of organic montmorillonite and chitosan-based intumescent flame retardant on flame retardant properties of polylactic acid[J].Journal of Forestry Engineering, 2017, 2(4):77-83.
[5] XU W Z, XU B L, WANG G S, et al.Synergistic effect of expandable graphite and α-type zirconium phosphate on flame retardancy of polyurethane elastomer[J].Journal of Applied Polymer Science, 2017, 134(32):45188.DOI:10.1002/app.45188.
[6] PAVLIDOU S, PAPASPYRIDES C D.A review on polymer-layered silicate nanocomposites[J].Progress in Polymer Science, 2008, 33(12):1119-1198.DOI:10.1016/j.progpolymsci.2008.07.008.
[7] SUTER J L, GROEN D, COVENEY P V.Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties[J].Advanced Materials, 2015, 27(6):966-984.DOI:10.1002/adma.201403361.
[8] 朱青.聚合物/层状硅酸盐纳米复合材料的制备与性能研究[D].南京:南京大学, 2016.
ZHU Q.Synthesis and properties of polymer/layered silicate nanocomposites[D].Nanjing:Nanjing University, 2016.
[9] WANG H N, LIU W J, YAO W, et al.Quaternary ammonium salts intercalated α-ZrP compounds for adsorption of phenolic compounds[J].Applied Surface Science, 2013, 268:179-187.DOI:10.1016/j.apsusc.2012.12.054.
[10] 陆宁.可降解生物聚酯/层状α-磷酸锆纳米复合材料研究[D].南京:南京林业大学, 2014.
LU N.Study on the nanocomposites of biodegradable polyesters with layered α-zirconium phosphate[D].Nanjing:Nanjing Forestry University, 2014.
[11] CHEN L, SUN D Z, LI J, et al.Exfoliation of layered zirconium phosphate nanoplatelets by melt compounding[J].Materials & Design, 2017, 122:247-254.DOI:10.1016/j.matdes.2017.03.026.
[12] DAVEY T W, DUCKER W A, HAYMAN A R.Aggregation of ω-hydroxy quaternary ammonium bolaform surfactants[J].Langmuir, 2000, 16(6):2430-2435.DOI:10.1021/la971303i.
[13] 杜以波, 李峰, 何静, 等.层状化合物α-磷酸锆的制备和表征[J].无机化学学报, 1998, 14(1):79-83.
DU Y B, LI F, HE J, et al.Preparation and characterization of the layered compound of α-zirconium phosphate[J].Chinese Journal of Inorganic Chemistry, 1998, 14(1):79-83.
[14] VARRLA E, BACKES C, PATON K R, et al.Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation[J].Chemistry of Materials, 2015, 27(3):1129-1139.DOI:10.1021/cm5044864.
[15] 张蕤, 陆宁, 朱清, 等.可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)/层状α-磷酸锆纳米复合材料的制备及性能[J].化工进展, 2014, 33(10):2716-2721.DOI:10.3969/j.issn.1000-6613.2014.10.032.
ZHANG R, LU N, ZHU Q, et al.Preparation and properties of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/layered α-zirconium phosphate nanocomposite[J].Chemical Industry and Engineering Progress, 2014, 33(10):2716-2721.
[16] 张仁华, 张蕤, 黎航, 等.纳米纤维素晶须增强生物聚酯P(3,4)HB复合材料[J].林业工程学报, 2016, 1(3):85-90.DOI:10.13360/j.issn.2096-1359.2016.03.016.
ZHANG R H, ZHANG R, LI H, et al.Biopolyester P(3,4)HB-based nanocomposites reinforced by cellulose nanowhiskers[J].Journal of Forestry Engineering, 2016, 1(3):85-90.
[17] KAMAL M R, KHOSHKAVA V.Effect of cellulose nanocrystals(CNC)on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites[J].Carbohydrate Polymers, 2015, 123:105-114.DOI:10.1016/j.carbpol.2015.01.012.
[18] NIKOLIC M S, MITRIC M, DAPCEVIC A, et al.Viscoelastic properties of poly(ε-caprolactone)/clay nanocomposites in solid and in melt state[J].Journal of Applied Polymer Science, 2016, 133(3):42896.DOI:10.1002/app.42896.

备注/Memo

备注/Memo:
收稿日期: 2018-10-19 修回日期:2019-06-15
基金项目:江苏省自然科学基金(BK2012821)。
作者简介:杨政,男,研究方向为生物质基高分子材料及其纳米复合材料。通信作者:张蕤,女,教授。E-mail:zhangrui@njfu.edu.cn
更新日期/Last Update: 2019-09-10