XU Duo,QUE Rongjun,TANG Mengxue,et al.Effect of starch pore former on microstructure and properties of porous SiC woodceramic[J].Journal of Forestry Engineering,2019,4(05):107-114.[doi:10.13360/j.issn.2096-1359.2019.05.015]





Effect of starch pore former on microstructure and properties of porous SiC woodceramic
北京林业大学,木质材料科学与应用教育部重点实验室,北京 100083
XU Duo QUE Rongjun TANG Mengxue YOU Xi CHEN Yao* GAO Jianmin
Beijing Forestry University, MOE Key Laboratory of Wooden Material Science and Application, Beijing 100083, China
碳化硅木陶瓷 多孔陶瓷 淀粉造孔剂 微观结构 力学性能
SiC woodceramic porous ceramics starch pore former microstructure mechanical property
S781.7; TQ174.75
为解决现有模板法制备多孔碳化硅木陶瓷材质呈各向异性、孔结构不可控的问题,实现多孔碳化硅木陶瓷的功能化利用,利用聚碳硅烷(PCS)将杨木木粉通过浸渍改性为木陶瓷粉体,采用粉末烧结法制备多孔碳化硅木陶瓷,并通过施加淀粉造孔剂对木陶瓷的孔结构进行调节。采用热重-红外联用手段(TG-FTIR)分析了木陶瓷粉体的裂解特性,采用X射线衍射(XRD)、扫描电镜(SEM)和压汞仪(MIP)表征了木陶瓷的物相组成、微观形貌及孔径分布,利用阿基米德法和同轴环施力法测定了木陶瓷的开口孔隙率及抗弯强度,分析了不同种类淀粉造孔剂对其开口孔隙率及力学性能的影响规律。结果表明,淀粉造孔剂的加入基本不影响木陶瓷的烧结过程及物相组成。木陶瓷的成分主要是β-SiC,材质呈各向同性。3种淀粉造孔剂的成孔趋势类似,当淀粉的添加量较低时(5%~10%),由分散的淀粉颗粒可形成直径10 μm左右的形状较为规则的开孔。造孔剂添加量高于10%后,团聚的淀粉颗粒将形成直径达30~40 μm的大孔。随着造孔剂添加量的增加,木陶瓷开口孔隙率由68%提高到80%,但抗弯强度逐渐降低,由5 MPa左右下降至3 MPa左右。从实用角度考虑,淀粉造孔剂应选为红薯淀粉,理想添加量应为10%~15%,此时,木陶瓷开口孔隙率为71%~77%,并且具有4.0~4.7 MPa的抗弯强度。
Bio-templating is a traditional route to fabricate porous biomorphic SiC woodceramic.However, this approach has encountered challenges, such as anisotropic structure and uncontrollable pore properties.To address these challenges, in this study, wood flour was modified by polycarbosilane(PCS)to produce woodceramic powder, and the powder-sintering method was utilized to fabricate porous SiC woodceramic, in which starch was selected as the pore former to adjust the pores in woodceramic.The pyrolysis behavior of woodceramic powder was examined by the thermogravimetric analyzer coupled with the Fourier transform infrared technique.The X-ray diffraction, scanning electron microscope and mercury intrusion porosimetry were used to characterize the microstructure, phase composition and pore size distribution of the as-prepared porous SiC woodceramic.The porosity and flexural strength were also determined by the Archimedes method and the monotonic equibiaxial flexure testing.The results indicated that the addition of starch did not have side effect on the sintering process and ceramic composition.It was found that the main phase of the woodceramic was β-SiC and the ceramic texture was isotropous.The pore-forming trend of different kinds of starch was the same.At the low starch addition level(5wt%-10wt%), the dissipated starch pore former particles could form regular-shaped pores with diameters around 10 μm.While with the increasing addition level, starch pore former particles could aggregate, causing large pores with diameters around 30-40 μm.With the increasing starch content, the open porosity of the woodceramic increased from 68% to 80%, while the flexural strength decreased from 5 MPa to around 3 MPa.From a practical point of view, the optimum pore former choice should be sweet potato starch and the addition level should be 10wt%-15wt%.Under this condition, the porosity could be around 71%-77% and the flexural strength could be around 4.0-4.7 MPa.


[1] PONRAJ J S, DHANABALAN S C, ATTOLINI G, et al.SiC nanostructures toward biomedical applications and its future challenges[J].Critical Reviews in Solid State and Materials Sciences, 2016, 41(5): 430-446.DOI: 10.1080/10408436.2016.1150806.
[2] WEI W, ZHANG W Q, JIANG Q, et al.Preparation of non-oxide SiC membrane for gas purification by spray coating[J].Journal of Membrane Science, 2017, 540: 381-390.DOI: 10.1016/j.memsci.2017.06.076.
[3] LI J F, LIN H, LI J B.Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support[J].Journal of the European Ceramic Society, 2011, 31(5): 825-831.DOI: 10.1016/j.jeurceramsoc.2010.11.033.
[4] WANG H, SCHMACK R, PAUL B, et al.Porous silicon carbide as a support for Mn/Na/W/SiC catalyst in the oxidative coupling of methane[J].Applied Catalysis A: General, 2017, 537: 33-39.DOI: 10.1016/j.apcata.2017.02.018.
[5] LIANG C Y, WANG Z F, WU L N, et al.Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J].ACS Applied Materials & Interfaces, 2017, 9(35): 29950-29957.DOI: 10.1021/acsami.7b07735.
[6] ZOLLFRANK C, SIEBER H.Microstructure and phase morphology of wood derived biomorphous SiSiC-ceramics[J].Journal of the European Ceramic Society, 2004, 24(2): 495-506.DOI: 10.1016/s0955-2219(03)00200-0.
[7] GHANEM H, ALKHATEEB E, GERHARD H, et al.Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique[J].Ceramics International, 2009, 35(7): 2767-2774.DOI: 10.1016/j.ceramint.2009.03.025.
[8] HERZOG A, KLINGNER R, VOGT U, et al.Wood-derived porous SiC ceramics by sol infiltration and carbothermal reduction[J].Journal of the American Ceramic Society, 2004, 87(5): 784-793.DOI: 10.1111/j.1551-2916.2004.00784.x.
[9] 高建民, 孟令萱, 齐景坤, 等.木纤维基碳化硅木质陶瓷制备工艺[J].稀有金属材料与工程, 2011, 40(S1): 223-226.
GAO J M, MENG L X, QI J K, et al.Research on silicon carbide woodceramics from poplar fiber[J].Rare Metal Materials and Engineering, 2011, 40(S1): 223-226.
[10] 陈璐, 黎阳.聚碳硅烷低温制备杉木结构SiC陶瓷[J].中国陶瓷, 2016, 52(2): 67-72.DOI: 10.16521/j.cnki.issn.1001-9642.2016.02.013.
CHEN L, LI Y.Preparation of SiC ceramics with a microtructure of fir using polycarbosilane at low-temperature[J].China Ceramics, 2016, 52(2): 67-72.
[11] WANG M J, LIU F, CHEN Y, et al.Fabrication of macroporous biomorphic SiC from cellulose nanofibers aerogel[J].Materials, 2018, 11(12): 2430.DOI: 10.3390/ma11122430.
[12] 周峰, 程晓农, 严学华, 等.原位反应烧结法制备SiC多孔木材陶瓷[J].材料科学与工程学报, 2008, 26(5): 757-760.DOI: 10.14136/j.cnki.issn.1673-2812.2008.05.029.
ZHOU F, CHENG X N, YAN X H, et al.Preparation of macroporous SiC woodceramics from via in situ reaction-sintering process[J].Journal of Materials Science and Engineering, 2008, 26(5): 757-760.
[13] ISTOMINA E I, ISTOMIN P V, NADUTKIN A V.Preparation of biomorphic SiC[J].Inorganic Materials, 2013, 49(10): 984-987.DOI: 10.1134/s0020168513090070.
[14] 陈璐.生物模板法低温制备SiC多孔陶瓷[J].中国陶瓷, 2014, 50(12): 28-30, 35.DOI: 10.16521/j.cnki.issn.1001-9642.2014.12.016.
CHEN L.Preparation of porous SiC ceramics at low-temperature by biological templates method[J].China Ceramics, 2014, 50(12): 28-30, 35.
[15] 钱军民, 王继平, 金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究[J].硅酸盐学报, 2003, 31(7): 635-640.DOI: 10.3321/j.issn.0454-5648.2003.07.003.
QIAN J M, WANG J P, JIN Z H.Preparation of macroporous SiC from woodceramics and silicon powder by in situ reaction-sinteringprocess[J].Journal of the Chinese Ceramic Society, 2003, 31(7): 635-640.
[16] RAMÍREZ-RICO J, MARTÍNEZ-FERNANDEZ J, SINGH M.Biomorphic ceramics from wood-derived precursors[J].International Materials Reviews, 2017, 62(8): 465-485.DOI: 10.1080/09506608.2017.1354429.
[17] ALONSO-FARIÑAS B, LUPION M, RODRIGUEZ-GALAN M, et al.New candle prototype for hot gas filtration industrial applications[J].Fuel, 2013, 114: 120-127.DOI: 10.1016/j.fuel.2012.12.054.
[18] GÓMEZ-MARTÍN A, ORIHUELA M P, BECERRA J A, et al.Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters[J].Materials & Design, 2016, 107: 450-460.DOI: 10.1016/j.matdes.2016.06.060.
[19] 曹柳絮, 陈建勋, 刘春轩, 等.聚碳硅烷的高温陶瓷化机理[J].中南大学学报(自然科学版), 2014, 45(1): 52-57.
CAO L X, CHEN J X, LIU C X, et al.Ceramization mechanism of polycarbosilane treated with high temperature[J].Journal of Central South University(Science and Technology), 2014, 45(1): 52-57.
[20] 王振宇, 邱墅, 何正斌, 等.基于TG-FTIR的圆柏心、边材热解研究[J].光谱学与光谱分析, 2017, 37(4): 1090-1094.DOI:10.3964/j.issn.1000-0593(2017)04-1090-05.
WANG Z N, QIU S, HE Z B, et al.Study of sabina chinensis heartwood and sapwood pyrolysis with TG-FTIR analysis[J].Spectroscopy and Spectral Analysis, 2017, 37(4): 1090-1094.
[21] SLOPIECKA K, BARTOCCI P, FANTOZZI F.Thermogravimetric analysis and kinetic study of poplar wood pyrolysis[J].Applied Energy, 2012, 97: 491-497.DOI: 10.1016/j.apenergy.2011.12.056.
[22] 任学勇, 杜洪双, 王文亮, 等.基于TG-FTIR的落叶松木材热失重与热解气相演变规律研究[J].光谱学与光谱分析, 2012, 32(4): 944-948.DOI: 10.3964/j.issn.1000-0593(2012)04-0944-05.
REN X Y, DU H S, WANG W L, et al.Analysis of pyrolysis process and gas evolution rule of larch wood by TG-FTIR[J].Spectroscopy and Spectral Analysis, 2012, 32(4): 944-948.


收稿日期:2019-02-16 修回日期:2019-03-30
基金项目:国家自然科学基金(51572028); 国家级大学生创新训练计划项目(201710022036)。
作者简介:徐多,女,研究方向为生物质资源综合利用。通信作者:陈瑶,女,副教授。E-mail: ychen@bjfu.edu.cn
更新日期/Last Update: 2019-09-10