[1]王小慧,李新生,葛文娇,等.生物质碳/MnO2复合电极材料及其在超级电容器中的应用进展[J].林业工程学报,2019,4(06):1-10.[doi:10.13360/j.issn.2096-1359.2019.06.001]
 WANG Xiaohui,LI Xinsheng,GE Wenjiao,et al.Progress in biomass-derived carbon materials/MnO2 composite and its application in supercapacitors[J].Journal of Forestry Engineering,2019,4(06):1-10.[doi:10.13360/j.issn.2096-1359.2019.06.001]
点击复制

生物质碳/MnO2复合电极材料及其在超级电容器中的应用进展()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
1-10
栏目:
专论综述
出版日期:
2019-11-20

文章信息/Info

Title:
Progress in biomass-derived carbon materials/MnO2 composite and its application in supercapacitors
文章编号:
2096-1359(2019)06-0001-10
作者:
王小慧李新生葛文娇杨洋
华南理工大学轻工科学与工程学院,广州 510640
Author(s):
WANG Xiaohui LI Xinsheng GE Wenjiao YANG Yang
School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
关键词:
生物质碳材料 MnO2 协同效应 电化学性能 超级电容器
Keywords:
biomass-derived carbon materials MnO2 synergistic effect electrochemical performance supercapacitors
分类号:
TM53; TQ351.3
DOI:
10.13360/j.issn.2096-1359.2019.06.001
文献标志码:
A
摘要:
近年来,生物质碳材料由于来源广泛、化学稳定性好、比表面积高、环境友好等优点已成为备受关注的电极材料,在能源转化和能量储存领域显示出巨大的应用潜力。但是生物质碳材料的理论比电容有限,且分散性差、机械脆性等缺陷也阻碍了其性能的完全实现,进一步影响了实际比电容。当其用于超级电容器时,受低能的静电作用力驱使,生物质碳材料基超级电容器的能量密度往往较低。将赝电容活性材料MnO2沉积在生物质碳材料基质上,利用生物质碳材料与MnO2的协同效应,可获得电导率、循环稳定性和电化学性能优异的复合材料。在介绍MnO2结构和性质的基础上,对生物质碳材料/MnO2复合电极材料的制备方法展开综合述评。此外,还总结了生物质碳材料/MnO2复合物作为电极材料在超级电容器上的研究进展,并指出了其在应用过程中存在的问题。最后,就生物质碳材料/MnO2复合物在高性能和柔性超级电容器未来应用方面进行分析,认为对生物质碳材料基底的改性、MnO2纳米结构的调控和超级电容器结构的设计优化将是今后的重点研究方向。
Abstract:
In recent years, biomass-derived carbon materials received much attention as electrode materials due to their low cost, good chemical stability, high specific surface area and environmental friendliness.To date, they have shown great potential in electrical energy conversion and storage.However, their theoretical specific capacitance is limited.Besides, the poor dispersion, poor refilling and multi-layer brittleness would hinder their actual applications in supercapacitors.As a result, the supercapacitor devices based on the biomass-derived carbon materials usually suffer from low energy density.An effective way to solve this problem is to deposit the electrochemically active materials, such as MnO2, on biomass-derived carbon materials, including activated carbon, biochar, carbon aerogels and carbon fibers, etc.The biomass-derived carbon materials with abundant pore structures are excellent conductive substrate for the growth of MnO2 crystals.Due to the synergistic effect of biomass-derived carbon materials and MnO2, the composite materials have exhibited excellent conductivity, cyclic stability and electrochemical properties.The preparation methods of biomass-derived carbon materials/MnO2 composite were reviewed and the structure and properties of MnO2were discussed.In addition, the research progress of biomass-derived carbon materials/MnO2 composites as electrode materials in supercapacitors was also reviewed.Among them, the biomass-derived porous carbon/MnO2 composite showed high conductivity and large specific surface area.The biomass-derived biochar with inherited 3D pore structures and highly porous carbon aerogels are ideal conducive template to grow MnO2 nanocrystals and the obtained carbon/MnO2 composites showed high electrochemical performances.Besides, the flexible carbon fiber/MnO2 composite was considered as excellent electrode materials in wearable supercapacitors.The current challenges in their potential applications were also discussed.Finally, it was put forward the focus and direction of future research of the biomass-derived carbon materials/MnO2 composite electrode materials, including the surface/interface modification of biomass carbon materials, the regulation of MnO2 nanostructure and the optimization of supercapacitor's device structure.

参考文献/References:

[1] HAN H, NOH Y, KIM Y, et al.An N-doped porous carbon network with a multidirectional structure as a highly efficient metal-free catalyst for the oxygen reduction reaction[J].Nanoscale, 2019, 11(5): 2423-2433.DOI:10.1039/C8NR10242B.
[2] LI X, GUAN B Y, GAO S, et al.A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction[J].Energy & Environmental Science, 2019, 12(2): 648-655.DOI:10.1039/C8EE02779J.
[3] CHEN L F, HUANG Z H, LIANG H W, et al.Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density[J].Advanced Materials, 2013, 25(34): 4746-4752.DOI: 10.1002/adma.201204949.
[4] WINTER M, BRODD R J.What are batteries, fuel cells, and supercapacitors?[J].Chemical Reviews, 2004, 104(10): 4245-4270.DOI: 10.1021/cr020730k.
[5] SNOOK G A, KAO P, BEST A S.Conducting-polymer-based supercapacitor devices and electrodes[J].Journal of Power Sources, 2011, 196(1): 1-12.DOI: 10.1016/j.jpowsour.2010.06.084.
[6] LI Y F, ZHU S C, LIU Z P.Reaction network of layer-to-tunnel transition of MnO2[J].Journal of the American Chemical Society, 2016, 138(16): 5371-5379.DOI: 10.1021/jacs.6b01768.
[7] BROCK S L, DUAN N, TIAN Z R, et al.A review of porous manganese oxide materials[J].Chemistry of Materials, 1998, 10(10): 2619-2628.DOI: 10.1021/cm980227h.
[8] YOU B, LI N, ZHU H, et al.Graphene oxide-dispersed pristine CNTs support for MnO2 nanorods as high performance supercapacitor electrodes[J].ChemSusChem, 2013, 6(3): 474-480.DOI: 10.1002/cssc.201200709.
[9] ZILONG W, ZHU Z, QIU J, et al.High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J].Journal of Materials Chemistry C, 2014, 2(7): 1331-1336.DOI:10.1039/C3TC31476F.
[10] LI W, XU K, LI B, et al.MnO2 nanoflower arrays with high rate capability for flexible supercapacitors[J].ChemElectroChem, 2014, 1(6): 1003-1008.DOI: 10.1002/celc.201400006.
[11] PARK S, SHIM H W, LEE C W, et al.Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes[J].Nano Research, 2015, 8(3): 990-1004.DOI: 10.1007/s12274-014-0581-1.
[12] JIANG H, ZHAO T, MA J, et al.Ultrafine manganese dioxide nanowire network for high-performance supercapacitors[J].Chemical Communications, 2011, 47(4): 1264-1266.DOI:10.1039/C0CC04134C.
[13] GU X, CHEN L, JU Z, et al.Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries[J].Advanced Functional Materials, 2013, 23(32): 4049-4056.DOI: 10.1002/adfm.201203779.
[14] LI W N, YUAN J, SHEN X F, et al.Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials[J].Advanced Functional Materials, 2006, 16(9): 1247-1253.DOI: 10.1002/adfm.200500504.
[15] WANG X, CHEN S, LI D, et al.Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors[J].ACS Sustainable Chemistry & Engineering, 2018, 6(1): 633-641.DOI: 10.1021/acssuschemeng.7b02960.
[16] YUAN C, ZHANG Y, PAN Y, et al.Investigation of the intercalation of polyvalent cations(Mg2+, Zn2+)into λ-MnO2 for rechargeable aqueous battery[J].Electrochimica Acta, 2014, 116: 404-412.DOI: 10.1016/j.electacta.2013.11.090.
[17] WANG Y, INDRAWIRAWAN S, DUAN X, et al.New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures[J].Chemical Engineering Journal, 2015, 266: 12-20.DOI: 10.1016/j.cej.2014.12.066.
[18] ZHU S, ZHANG H, CHEN P, et al.Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors[J].Journal of Materials Chemistry A, 2015, 3(4): 1540-1548.DOI:10.1039/C4TA04921G.
[19] ZHANG G, YAN Y, SONG L, et al.Facile synthesis of mesoporous α-MnO2 flower-like nanostructures and their catalytic performance in the degradation of poly(ethylene terephthalate)wastes[J].Science of Advanced Materials, 2012, 4(11): 1179-1184.DOI: 10.1166/sam.2012.1411.
[20] JIN L, XU L, MOREIN C, et al.Titanium containing γ-MnO2(TM)hollow spheres: one-step synthesis and catalytic activities in Li/air batteries and oxidative chemical reactions[J].Advanced Functional Materials, 2010, 20(19): 3373-3382.DOI: 10.1002/adfm.201001080.
[21] MUNAIAH Y, SUNDARA RAJ B G, PREM KUMAR T, et al.Facile synthesis of hollow sphere amorphous MnO2: the formation mechanism, morphology and effect of a bivalent cation-containing electrolyte on its supercapacitive behavior[J].Journal of Materials Chemistry A, 2013, 1(13): 4300-4306.DOI:10.1039/C3TA01089A.
[22] WU J, WANG Q, UMAR A, et al.Highly sensitive p-nitrophenol chemical sensor based on crystalline α-MnO2 nanotubes[J].New Journal of Chemistry, 2014, 38(9): 4420-4426.DOI:10.1039/C4NJ00420E.
[23] SELVAKUMAR K, SENTHIL KUMAR S M, THANGAMUTHU R, et al.Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution[J].The Journal of Physical Chemistry C, 2015, 119(12): 6604-6618.DOI: 10.1021/jp5127915.
[24] LI H, WANG B, HE X, et al.Composite of hierarchical interpenetrating 3D hollow carbon skeleton from lotus pollen and hexagonal MnO2 nanosheets for high-performance supercapacitors[J].Journal of Materials Chemistry A, 2015, 3(18): 9754-9762.DOI:10.1039/C5TA01890K.
[25] LI Q, HE J, LIU D, et al.Facile preparation of hovenia-acerba-like hierarchical MnO2/C composites and their excellent energy storage performance for supercapacitors[J].Journal of Alloys and Compounds, 2017, 693: 970-978.DOI: 10.1016/j.jallcom.2016.09.259.
[26] CHI H Z, YIN S, CEN D, et al.The capacitive behaviours of MnO2/carbon fiber composite electrode prepared in the presence of sodium tetraborate[J].Journal of Alloys and Compounds, 2016, 678: 42-50.DOI: 10.1016/j.jallcom.2016.03.292.
[27] YANG F, LIU X, MI R, et al.A novel radiation method for preparing MnO2/BC monolith hybrids with outstanding supercapacitance performance[J].Nanomaterials, 2018, 8(7): 533.DOI: 10.3390/nano8070533.
[28] ZHANG X, MENG X, GONG S, et al.Synthesis and characterization of 3D MnO2/carbon microtube bundle for supercapacitor electrodes[J].Materials Letters, 2016, 179: 73-77.DOI: 10.1016/j.matlet.2016.05.060.
[29] ZHAO G, ZOU G, HOU H, et al.Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J].Journal of Materials Chemistry A, 2017, 5(46): 24353-24360.DOI:10.1039/C7TA07860A.
[30] YANG G, PARK S J.MnO2 and biomass-derived 3D porous carbon composites electrodes for high performance supercapacitor applications[J].Journal of Alloys and Compounds, 2018, 741: 360-367.DOI: 10.1016/j.jallcom.2018.01.108.
[31] YUAN C, LIN H, LU H, et al.Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors[J].Applied Energy, 2016, 178: 260-268.DOI: 10.1016/j.apenergy.2016.06.057.
[32] TODA M, TAKAGAKI A, OKAMURA M, et al.Biodiesel made with sugar catalyst[J].Nature, 2005, 438(7065): 178.DOI: 10.1038/438178a.
[33] GAFFNEY T R.Porous solids for air separation[J].Current Opinion in Solid State and Materials Science, 1996, 1(1): 69-75.DOI: 10.1016/S1359-0286(96)80013-1.
[34] CHENG F, LIANG J, ZHAO J, et al.Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake[J].Chemistry of Materials, 2008, 20(5): 1889-1895.DOI: 10.1021/cm702816x.
[35] GAO P C, LU A H, LI W C.Dual functions of activated carbon in a positive electrode for MnO2-based hybrid supercapacitor[J].Journal of Power Sources, 2011, 196(8): 4095-4101.DOI: 10.1016/j.jpowsour.2010.12.056.
[36] PRABUNATHAN P, SETHURAMAN K, ALAGAR M.MnO2-doped, polyaniline-grafted rice husk ash nanocomposites and their electrochemical capacitor applications[J].RSC Advances, 2014, 4(88): 47726-47734.DOI:10.1039/C4RA04633A
[37] GAO Y P, ZHAI Z B, HUANG K J, et al.Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors[J].New Journal of Chemistry, 2017, 41(20): 11456-11470.DOI:10.1039/C7NJ02580G.
[38] LI J, REN Z, WANG S, et al.MnO2 nanosheets grown on internal surface of macroporous carbon with enhanced electrochemical performance for supercapacitors[J].ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3641-3648.DOI: 10.1021/acssuschemeng.6b00092.
[39] YANG M, KIM D S, HONG S B, et al.MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors[J].Langmuir, 2017, 33(21): 5140-5147.DOI: 10.1021/acs.langmuir.7b00589.
[40] WEGST U G K, BAI H, SAIZ E, et al.Bioinspired structural materials[J].Nature Materials, 2015, 14: 23-36.DOI: 10.1038/NMAT4089.
[41] HAO L, LI X, ZHI L.Carbonaceous electrode materials for supercapacitors[J].Advanced Materials, 2013, 25(28): 3899-3904.DOI: 10.1002/adma.201301204.
[42] WANG Q, YAN J, FAN Z.Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities[J].Energy & Environmental Science, 2016, 9(3): 729-762.DOI:10.1039/C5EE03109E.
[43] KLESZYK P, RATAJCZAK P, SKOWRON P, et al.Carbons with narrow pore size distribution prepared by simultaneous carbonization and self-activation of tobacco stems and their application to supercapacitors[J].Carbon, 2015, 81: 148-157.DOI: 10.1016/j.carbon.2014.09.043.
[44] XIA C, SHI S Q.Self-activation for activated carbon from biomass: theory and parameters[J].Green Chemistry, 2016, 18(7): 2063-2071.DOI:10.1039/C5GC02152A.
[45] WANG C, XIONG Y, WANG H, et al.All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor[J].Journal of Colloid and Interface Science, 2018, 528: 349-359.DOI: 10.1016/j.jcis.2018.05.103.
[46] WANG L, ZHENG Y, CHEN S, et al.Three-dimensional kenaf stem-derived porous carbon/MnO2 for high-performance supercapacitors[J].Electrochimica Acta, 2014, 135: 380-387.DOI: 10.1016/j.electacta.2014.05.044.
[47] CHEN C, ZHANG Y, LI Y, et al.All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance[J].Energy & Environmental Science, 2017, 10(2): 538-545.DOI:10.1039/C6EE03716J.
[48] YUAN X, ZHANG Y, YAN Y, et al.Tunable synthesis of biomass-based hierarchical porous carbon scaffold@MnO2 nanohy-brids for asymmetric supercapacitor[J].Chemical Engineering Journal, 2019.DOI: 10.1016/j.cej.2019.03.090.
[49] CAI T, WANG H, JIN C, et al.Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation[J].Journal of Materials Science: Materials in Electronics, 2018, 29(5): 4334-4344.DOI: 10.1007/s10854-017-8381-5.
[50] ZHANG X L, FU H J, YANG G R, et al.The effects of cardiovascular risk factor combined anti-platelet therapy and the risk of cerebrovascular events in patients with T2DM in an urban community over 96-months follow-up: the Beijing communities diabetes study 19[J].Diabetes Research and Clinical Practice, 2018, 144: 236-244.DOI: 10.1016/j.diabres.2018.09.007.
[51] DE MARCO M, MARKOULIDIS F, MENZEL R, et al.Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry[J].Journal of Materials Chemistry A, 2016, 4(15): 5385-5389.DOI:10.1039/C5TA10311H.
[52] HONG J Y, SOHN E H, PARK S, et al.Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel[J].Chemical Engineering Journal, 2015, 269: 229-235.DOI: 10.1016/j.cej.2015.01.066.
[53] ZHOU X, WANG P, ZHANG Y, et al.From waste cotton linter: a renewable environment-friendly biomass based carbon fibers preparation[J].ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5585-5593.DOI: 10.1021/acssuschemeng.6b01408.
[54] LI L, HU T, SUN H, et al.Pressure-sensitive and conductive carbon aerogels from poplars catkins for selective oil absorption and oil/water separation[J].ACS Applied Materials & Interfaces, 2017, 9(21): 18001-18007.DOI: 10.1021/acsami.7b04687.
[55] YANG S, CHEN L, MU L, et al.Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances[J].RSC Advances, 2015, 5(48): 38470-38478.DOI:10.1039/C5RA03701H.
[56] WAN W, ZHANG R, LI W, et al.Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes[J].Environmental Science: Nano, 2016, 3(1): 107-113.DOI:10.1039/C5EN00125K.
[57] COLLARD F X, BLIN J.A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J].Renewable and Sustainable Energy Reviews, 2014, 38: 594-608.DOI: 10.1016/j.rser.2014.06.013.
[58] LIU H, GENG B, CHEN Y, et al.Review on the aerogel-type oil sorbents derived from nanocellulose[J].ACS Sustainable Chemistry & Engineering, 2016, 5(1): 49-66.DOI: 10.1021/acssuschemeng.6b02301.
[59] YUAN D, ZHANG T, GUO Q, et al.Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation[J].Chemical Engineering Journal, 2018, 351: 622-630.DOI: 10.1016/j.cej.2018.06.132.
[60] YAO Q, XIONG Y, WANG H, et al.MnO2 nanoflakes/cellulose nanofibre aerogel fabricated via ultrasonication for high-performance water desalination[J].Journal of Materials Chemistry A, 2017, 5(20): 9580-9590.DOI:10.1039/C7TA01469D.
[61] REN Y, XU Q, ZHANG J, et al.Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors[J].ACS Applied Materials & Interfaces, 2014, 6(12): 9689-9697.DOI: 10.1021/am502035g.
[62] GOODHEW P J, CLARKE A J, BAILEY J E.A review of the fabrication and properties of carbon fibres[J].Materials Science and Engineering, 1975, 17(1): 3-30.DOI: 10.1016/0025-5416(75)90026-9.
[63] HUGE J A, PHILLIPS V A, ROBERTS B W.Intimate structure of high modulus carbon fibres[J].Nature, 1970, 226(5241): 144.DOI: 10.1038/226144a0.
[64] LEWIS S J.The use of carbon fibre composites on military aircraft[J].Composites Manufacturing, 1994, 5(2): 95-103.DOI: 10.1016/0956-7143(94)90060-4.
[65] MINUS M, KUMAR S.The processing, properties, and structure of carbon fibers[J].JOM, 2005, 57(2): 52-58.DOI: 10.1007/s11837-005-0217-8.
[66] MORETON R, WATT W, JOHNSON W.Carbon fibres of high strength and high breaking strain[J].Nature, 1967, 213(5077): 690-691.DOI: 10.1038/213690a0.
[67] SALVADO R, LOPES C, SZOJDA L, et al.Carbon fiber epoxy composites for both strengthening and health monitoring of structures[J].Sensors, 2015, 15(5): 10753-10770.DOI: 10.3390/s150510753.
[68] SOUTIS C.Fibre reinforced composites in aircraft construction[J].Progress in Aerospace Sciences, 2005, 41(2): 143-151.DOI: 10.1016/j.paerosci.2005.02.004.
[69] LIU Y, CHEN Z, XIE W, et al.In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber[J].ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5318-5328.DOI: 10.1021/acssuschemeng.8b06339.
[70] ZHANG X, LI H, QIN B, et al.Direct synthesis of porous graphitic carbon sheets grafted on carbon fibers for high-performance supercapacitors[J].Journal of Materials Chemistry A, 2019, 7(7): 3298-3306.DOI:10.1039/C8TA11844B.
[71] HU X, XIONG W, WANG W, et al.Hierarchical manganese dioxide/poly(3,4-ethylenedioxythiophene)core-shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor[J].ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1201-1211.DOI: 10.1021/acssuschemeng.5b01263.
[72] WAN C, JIAO Y, LIANG D, et al.A high-performance, all-textile and spirally wound asymmetric supercapacitors based on core-sheath structured MnO2 nanoribbons and cotton-derived carbon cloth[J].Electrochimica Acta, 2018, 285: 262-271.DOI: 10.1016/j.electacta.2018.07.036.

备注/Memo

备注/Memo:
收稿日期:2019-05-12 修回日期:2019-08-25 基金项目:国家自然科学基金(51673072)。 作者简介:王小慧,女,教授,研究方向为生物质材料。E-mail: fewangxh@scut.edu.cn
更新日期/Last Update: 2019-11-10