[1]盛佳乐,陈家宝,巫其荣,等.轻型化竹基混凝土模板热压工艺的响应面优化[J].林业工程学报,2019,4(06):54-61.[doi:10.13360/j.issn.2096-1359.2019.06.008]
 SHENG Jiale,CHEN Jiabao,WU Qirong,et al.Response surface optimization of hot-pressing technology for light bamboo-based concrete formwork[J].Journal of Forestry Engineering,2019,4(06):54-61.[doi:10.13360/j.issn.2096-1359.2019.06.008]
点击复制

轻型化竹基混凝土模板热压工艺的响应面优化()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
54-61
栏目:
木材科学与技术
出版日期:
2019-11-20

文章信息/Info

Title:
Response surface optimization of hot-pressing technology for light bamboo-based concrete formwork
文章编号:
2096-1359(2019)06-0054-08
作者:
盛佳乐陈家宝巫其荣齐文玉关鑫李吉庆林金国*
福建农林大学材料工程学院,福州 350002
Author(s):
SHENG Jiale CHEN Jiabao WU Qirong QI Wenyu GUAN Xin LI Jiqing LIN Jinguo*
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
竹基混凝土模板 轻型化 氧冷等离子体 热压工艺 响应面法
Keywords:
bamboo based concrete formwork light oxygen cold plasma hot-pressing process response surface method
分类号:
S781.9
DOI:
10.13360/j.issn.2096-1359.2019.06.008
文献标志码:
A
摘要:
为了对氧冷等离子体改性组坯结构优化后的轻型化竹基混凝土模板进行热压工艺优化,采用响应面法的中心组合设计(BBD)原理,以热压压力、热压温度、热压时间、竹材含水率为参考因素,进行4因素3水平的响应面研究。结果表明,各热压因素之间均具有较强的交互作用,其中,热压压力和竹材含水率的交互作用对静曲强度影响最大。通过响应面软件的模型优化得出的最佳热压方案为:热压压力3.22 MPa,热压温度142.08 ℃,热压时间0.8 min/mm,竹材含水率15%。且得到响应值静曲强度(Y)与实际自变量X1、X2、X3和X4的回归模型方程为Y=97.78+0.12X1-1.47X2+0.61X3+1.17X4+0.10X1X2-0.93X1X3+2.97X1X4-1.25X2X3+0.90X2X4-1.24X3X4-3.58X12-3.58X22-0.40X32-1.60X42。该方案下氧冷等离子体改性轻型化竹基混凝土模板的干状纵向静曲强度的理论预测值为98.74 MPa,二次回归方程与试验实际值的相关性达94.35%,且能解释88.69%响应值的变化。根据最优方案制备的氧冷等离子体改性轻型化竹基混凝土模板的干状纵向静曲强度试验测定值为99.7 MPa,预测准确度为99%,且经氧冷等离子体改性的轻型化竹基混凝土模板各项物理力学性能均能满足LY/T 1574-2000的要求。
Abstract:
As one of the biodegradable and renewable materials in nature, bamboo is flexible, shock-resistant, and preferable to exclusive use of bamboo-based concrete formwork for the construction applications.The properties of bamboo reinforcement could be determined by the factors of the slab structure and construction technique with bamboo reinforced concrete.Most importantly, the hot-pressing process of the lightweight bamboo-based concrete formwork can affect its strength.In order to optimize the hot-pressing process of the bamboo-based concrete formwork, the oxygen cold plasma method was utilized in this study.Based on the design principle of Box-Behnken design(BBD), the response surface algorithm with the four reference factors(hot-pressing pressure, hot-pressing temperature, hot-pressing time and moisture content of bamboo)and three levels was employed.The results showed that there was a strong interaction among the hot-pressing factors, and the interaction between hot-pressing pressure and bamboo moisture content had the greatest impact on the static bending strength.The optimal hot-pressing scheme obtained by the model optimization of the response surface software was as follows: the hot-pressing pressure(X1)was 3.22 MPa, the hot-pressing temperature(X2)was 142.08 ℃, the hot-pressing time(X3)was 0.8 min/mm, and the bamboo moisture content(X4)was 15%.The regression model equation of response value static flexural strength(Y)to actual independent variables X1, X2, X3 and X4 was Y=97.78+0.12X1-1.47X2+0.61X3+1.17X4+0.10X1X2-0.93X1X3+2.97X1X4-1.25X2X3+0.90X2X4-1.24X3X4-3.58X12-3.58X22-0.40X32-1.60X42.The theoretical prediction value under this scheme was 98.74 MPa, the correlation between the quadratic regression equation and the actual test value was 94.35%, and it could explain 88.69% of the changes in response values.According to the optimal scheme, the dry longitudinal static strength of lightweight bamboo-based concrete formwork modified by oxygen cold plasma was 99.7 MPa, the prediction accuracy was 99%, and the physical and mechanical properties of lightweight bamboo-based concrete formwork modified by oxygen cold plasma could meet the requirements of the forestry industry standard LY/T 1574-2000.

参考文献/References:

[1] 唐丽荣, 欧文, 林雯怡, 等.酸水解制备纳米纤维素工艺条件的响应面优化[J].林产化学与工业, 2011, 31(6): 61-65.
TANG L R, OU W, LIN W Y, et al.Optimization of acid hydrolysis processing of nanocellulose crystal using response surface methodology[J].Chemistry and Industry of Forest Products, 2011, 31(6): 61-65.
[2] 徐仁崇, 刘君秀, 曾冲盛, 等.采用Design-Expert软件优化透水混凝土配合比设计[J].新型建筑材料, 2010, 37(7): 17-20.DOI: 10.3969/j.issn.1001-702X.2010.07.006.
XU R C, LIU J X, ZENG C S, et al.Optimal design of pervious concrete proportion using Design-Expert software[J].New Building Materials, 2010, 37(7): 17-20.
[3] 黄道榜, 王威, 陈勇花, 等.基于响应面法的重组竹硅铝溶胶防霉剂研究[J].林业工程学报, 2018, 3(3): 29-34.DOI: 10.13360/j.issn.2096-1359.2018.03.005.
HUANG D B, WANG W, CHEN Y H, et al.Optimization of silica-alumina sol anti-mold agent of bamboo scrimber using response surface methodology[J].Journal of Forestry Engineering, 2018, 3(3): 29-34.
[4] 盛佳乐, 巫其荣, 关鑫, 等.冷等离子体改性对轻型化竹基混凝土模板性能的影响[J].竹子学报, 2018(4): 25-29.DOI:10.19560/j.cnki.issn.1000-6567.2018.04.006
SHENG J L, WU Q R, GUAN X, et al.Effect of cold plasma modification on properties of lightweight bamboo based concrete formwork[J].Journal of Bamboo Research, 2018(4): 25-29.
[5] 马肖,金永新,陈煜娟,等.中心组合设计-响应面法优化复方当归补血汤提取工艺[J].中国中医药信息杂志, 2018, 25(9): 66-70.
MA X, JIN Y X, CHEN Y J, et al.Optimization of extraction technology of Compound Danggui Buxue Decoction by central composite design-response surface method[J].Chinese Journal of Information on TCM, 2018, 25(9): 66-70.
[6] KHARRAT N, AISSA I, DGACHI Y, et al.Enzymatic synthesis of 1, 3-dihydroxyphenylacetoyl-sn-glycerol: optimization by response surface methodology and evaluation of its antioxidant and antibacterial activities[J].Bioorganic Chemistry, 2017, 75: 347-356.DOI: 10.1016/j.bioorg.2017.10.011.
[7] 杜亚洲, 肖生苓, 岳金权.响应面法优化稻草模塑材料热压工艺参数[J].包装工程, 2018, 39(21): 63-71.DOI:10.19554/j.cnki.1001-3563.2018.21.013
DU Y Z, XIAO S L, YUE J Q.Hot-pressing process parameters of rice straw molding material optimized based on response surface method[J].Packaging Engineering, 2018, 39(21): 63-71.
[8] 麻泽宇, 吴峰华, 何志平, 等.响应面法优化黄秋葵酸奶发酵工艺[J].北方园艺, 2019(6): 129-135.
MA Z Y, WU F H, HE Z P, et al.Optimization of fermentation process for okra yogurt by response surface analysis[J].Northern Horticulture, 2019(6): 129-135.
[9] 郭海如, 崔雪梅, 李春生, 等.基于主成分分析的硒、铜交互作用下油菜生理响应机制研究[J].西南农业学报, 2017, 30(11): 2468-2473.DOI: 10.16213/j.cnki.scjas.2017.11.013.
GUO H R, CUI X M, LI C S, et al.Study on physiological response for rape under selenium and copper interaction based on principal component analysis[J].Southwest China Journal of Agricultural Sciences, 2017, 30(11): 2468-2473.
[10] 何为, 薛卫东, 唐斌.优化试验设计方法及数据分析[M].北京: 化学工业出版社, 2012.
HE W, XUE W D, TANG B.Optimized experimental design method and data analysis[M].Beijing: Chemical Industry Press, 2012.
[11] 任一萍, 刘红征, 郭文静, 等.两种树脂胶合重组竹结构材的性能比较[J].森林工程, 2019, 35(2): 45-49.DOI: 10.16270/j.cnki.slgc.2019.02.007.
REN Y P, LIU H Z, GUO W J, et al.Adhesion performance comparison of structural bamboo scrimber with two kinds of resin[J].Forest Engineering, 2019, 35(2): 45-49.
[12] 于文吉, 余养伦, 江泽慧, 等.竹材表面胶合性能[J].竹子研究汇刊, 2006, 25(1): 30-36.DOI: 10.3969/j.issn.1000-6567.2006.01.008.
YU W J, YU Y L, JIANG Z H, et al.Bonding properties of bamboo surface[J].Journal of Bamboo Research, 2006, 25(1): 30-36.
[13] 张建, 李琴, 袁少飞, 等.重组竹材用酚醛树脂渗透性能研究[J].林业机械与木工设备, 2015, 43(2): 22-25.DOI: 10.13279/j.cnki.fmwe.2015.0022.
ZHANG J, LI Q, YUAN S F, et al.Study on permeability of phenol-formaldehyde resin for reconstituted bamboo lumber[J].Forestry Machinery & Woodworking Equipment, 2015, 43(2): 22-25.
[14] 严永林, 陈哲.板坯预热对中心层温度的影响[J].木工机床, 2004(3): 12-13.DOI: 10.3969/j.issn.1005-1937.2004.03.005.
YAN Y L, CHEN Z.Center-temperature influence for heating the plate[J].Woodworking Machinery, 2004(3): 12-13.
[15] 高黎, 王正, 任一萍, 等.热压工艺及板坯含水率对竹帘胶合板性能的影响[J].木材工业, 2012, 26(6): 9-12.DOI: 10.19455/j.mcgy.2012.06.003.
GAO L, WANG Z, REN Y P, et al.Influence of hot pressing method and mat moisture content on properties of bamboo plywood[J].China Wood Industry, 2012, 26(6): 9-12.
[16] 陈婷婷, 刘文地, 邱仁辉, 等.改性大麻纤维/不饱和聚酯复合材料的力学性能及界面表征[J].高分子材料科学与工程, 2013, 29(9): 94-97.DOI: 10.16865/j.cnki.1000-7555.2013.09.022.
CHEN T T, LIU W D, QIU R H, et al.Mechanical properties and interface characterization of modified-hemp-fiber reinforced unsaturated polyester composites[J].Polymer Materials Science & Engineering, 2013, 29(9): 94-97.
[17] 赵威, 王伟.非线性偏最小二乘回归法在均匀设计响应面法中的应用[J].航空学报, 2012, 33(5): 839-847.
ZHAO W, WANG W.Application of non-linear partial least squares regression method to response surface method with uniform design[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 839-847.
[18] 汤丽娟, 章蓉, 周晓燕, 等.氧冷等离子体处理对杨木胶合板甲醛释放量的影响[J].林产工业, 2011, 38(3): 14-17.DOI: 10.3969/j.issn.1001-5299.2011.03.004.
TANG L J, ZHANG R, ZHOU X Y, et al.Influence of O2-cold plasma treatment on formaldehyde emission from poplar plywood[J].China Forest Products Industry, 2011, 38(3): 14-17.
[19] 巫其荣, 关鑫, 林金国, 等.氧冷等离子体处理对竹材表面润湿性的影响[J].西南林业大学学报, 2017, 37(4): 188-193.DOI: 10.11929/j.issn.2095-1914.2017.04.027.
WU Q R, GUAN X, LIN J G, et al.Effect of oxygen cold plasma treatment on the surface wettability of bamboo[J].Journal of Southwest Forestry University, 2017, 37(4): 188-193.
[20] NGUYEN Thiphuong, 陈卫民, 曹倚中, 等.等离子体处理对高温干燥杨木单板表面性能的影响[J].林业工程学报, 2017, 2(6): 15-20.DOI: 10.13360/j.issn.2096-1359.2017.06.003.
NGUYEN T P, CHEN W M, CAO Y Z, et al.Effect of plasma treatment on surface properties of high temperature dried poplar veneers[J].Journal of Forestry Engineering, 2017, 2(6): 15-20.

备注/Memo

备注/Memo:
收稿日期:2019-04-02 修回日期:2019-05-08 基金项目:福建省科技重大专项(2014NZ0003); 福建省林业科技推广项目(闽林推[2017]SJ18号); 福建农林大学科技创新专项基金(KFA17218A/CXZX2018011)。 作者简介:盛佳乐,男,研究方向为木材科学。通信作者:林金国,男,教授。E-mail: fjlinjg@126.com
更新日期/Last Update: 2019-11-10