[1]饶纤纤,武辰俞,骆庆莉,等.一种含长联接链的松香基双子表面活性剂的合成与性能分析[J].林业工程学报,2019,4(06):83-90.[doi:10.13360/j.issn.2096-1359.2019.06.012]
 RAO Xianxian,WU Chenyu,LUO Qingli,et al.Synthesis and properties of a rosin-based gemini surfactant containing a long spacer[J].Journal of Forestry Engineering,2019,4(06):83-90.[doi:10.13360/j.issn.2096-1359.2019.06.012]
点击复制

一种含长联接链的松香基双子表面活性剂的合成与性能分析()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
83-90
栏目:
林产化学加工
出版日期:
2019-11-20

文章信息/Info

Title:
Synthesis and properties of a rosin-based gemini surfactant containing a long spacer
文章编号:
2096-1359(2019)06-0083-08
作者:
饶纤纤武辰俞骆庆莉刘芸姗宋冰蕾*
江南大学化学与材料工程学院,合成与生物胶体教育部重点实验室,江苏 无锡 214122
Author(s):
RAO Xianxian WU Chenyu LUO Qingli LIU Yunshan SONG Binglei*
School of Chemical and Material Engineering, Jiangnan University, The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu, China
关键词:
松香 双子表面活性剂 合成 表面活性 蠕虫胶束 黏弹性
Keywords:
rosin Gemini surfactant synthesis surface activity wormlike micelle viscous
分类号:
TQ33.47
DOI:
10.13360/j.issn.2096-1359.2019.06.012
文献标志码:
A
摘要:
以歧化松香为原料,经过酯化和季铵化反应,合成得到一种含长联接链的松香基双子表面活性剂(简称R-D-12-D-R)。通过表面张力法、尼罗红荧光探针法和流变方法等研究了该表面活性剂的表面活性和流变行为。结果表明,该表面活性剂的临界胶束浓度(cmc)为0.11 mmol/L,临界胶束浓度处对应的表面张力(γcmc)为36.4 mN/m,使水的表面张力下降20 mN/m时所对应的表面活性剂浓度的负对数(pC20)为1.70,表现出很好的表面活性与聚集能力。随着表面活性剂浓度的增加,乳状液的液珠粒径也越来越小,乳状液也更加稳定,浓度大于0.10 mmol/L的乳状液在放置7 d以上依然可以保持稳定,这说明R-D-12-D-R还具有良好的稳定乳液的能力。R-D-12-D-R在溶液中可以自组装形成蠕虫胶束,使溶液表现出显著的黏弹性。在测试的振荡频率范围内,体系的弹性模量(G')始终大于黏性模量(G″),表现出溶液具有显著的弹性特征。
Abstract:
Rosin is one of the renewable forest resources with favorable biodegradability and biocompatibility.Rosin acid is the main component of rosin, and its unique tricyclic phenanthrene skeleton structure shows strong hydrophobicity.Rosin is thus one of the important raw materials for preparing "green surfactant".Gemini surfactants consisted of two hydrophilic head groups, two hydrophobic tail chains and one spacer group.Compared with conventional surfactants, Gemini surfactants showed lower critical micelle concentration, higher surface activity and good lime soap dispersibility.Gemini surfactants had rich aggregation behavior and could form various aggregates such as thick-walled vesicles, tubular structures, spongy aggregates and wormlike micelles without any additives.The spacer group was an important structural element of the Gemini surfactant.The length, rigidity and polarity of the spacer had an important influence on the interactions between the surfactant molecules.Herein, taking the disproportionated rosin as the starting material, a rosin-based Gemini surfactant with long spacer, abbreviated as R-D-12-D-R, was synthesized through esterification and quaternization reactions.The solution behaviour of R-D-12-D-R was investigated using the surface tension, fluorescence and rheology methods.The results showed that cmc, γcmc and pC20 of R-D-12-D-R were 0.11 mmol/L, 36.4 mN/m and 1.70, respectively.The volume of the tricyclic diterpene structure of the dehydroabietic acid unit was relatively large, leading to dense arrangement of surfactants at the air/water interface.R-D-12-D-R thus exhibited a stronger ability to reduce surface tension than that of Gemini surfactants containing flexible hydrophobic tails.R-D-12-D-R also showed excellent performance in stabilizing emulsions.With the increase of surfactant concentration, the particle size of the emulsion became smaller, leading to more stable emulsions.Emulsions with concentration larger than 0.10 mmol/L remained stable after being placed for over 7 days.In addition, R-D-12-D-R can self-assembled into wormlike micellesand endowed the solutions with remarkable viscoelasticity.This was caused by the bended long spacer towards the alkyl tails, resulting in increased molecular packing parameter.Within the investigated oscillary frequencies, the elastic modulus(G')was always above the viscous modulus(G″), indicating the solutions were elastic in nature.The investigation of rosin-based surfactants was helpful to reveal new principles of molecular interactions and could provide more systems containing novel self-assembled aggregates.

参考文献/References:

[1] JIA H, LENG X, WANG Q X, et al.Controllable emulsion phasebehaviour via the selective host-guest recognition of mixed surfactants at the water/octane interface[J].Chemical Engineering Science, 2019, 202: 75-83.DOI:10.1016/j.ces.2019.03.036.
[2] PISÁRCˇIK, POLAKOVICˇOVÁ, MARKULIAK, et al.Self-assembly properties of cationic gemini surfactants with biodegradable groups in the spacer[J].Molecules, 2019, 24(8): 1481.DOI:10.3390/molecules24081481.
[3] ASADOV Z H, AHMADOVA G A, RAHIMOV R A, et al.Micellization and adsorption properties of new cationic gemini surfactants having hydroxyisopropyl group[J].Journal of Chemical & Engineering Data, 2019, 64(3): 952-962.DOI:10.1021/acs.jced.8b00815.
[4] 赵剑曦.Gemini表面活性剂的研究与发展方向[J].精细与专用化学品, 2008, 16(2): 14-19.DOI:10.3969/j.issn.1008-1100.2008.02.002.
ZHAO J X.Significance of investigation of gemini surfactants and its development trends[J].Fine and Specialty Chemicals, 2008, 16(2): 14-19.
[5] FENG L, XIE D H, SONG B L, et al.Aggregate evolution in aqueous solutions of a Gemini surfactant derived from dehydroabietic acid[J].Soft Matter, 2018, 14(7): 1210-1218.DOI:10.1039/c7sm02173a.
[6] LI W K, XIE D H, SONG B L, et al.Synthesis and characterization of ordered mesoporous silica using rosin-based Gemini surfactants[J].Journal of Materials Science, 2018, 53(4): 2434-2442.DOI:10.1007/s10853-017-1709-y.
[7] CHEN J J, SONG B L, PEI X M, et al.Rheological behavior of environmentally friendly viscoelastic solutions formed by a rosin-based anionic surfactant[J].Journal of Agricultural and Food Chemistry, 2019, 67(7): 2004-2011.DOI:10.1021/acs.jafc.8b06985.
[8] YAN X Y, ZHAI Z L, XU J, et al.CO2-responsive Pickering emulsions stabilized by a bio-based rigid surfactant with nanosilica[J].Journal of Agricultural and Food Chemistry, 2018, 66(41): 10769-10776.DOI:10.1021/acs.jafc.8b03458.
[9] LEI L, XIE D H, SONG B L, et al.Photoresponsive foams generated by a rigid surfactant derived from dehydroabietic acid[J].Langmuir, 2017, 33(32): 7908-7916.DOI:10.1021/acs.langmuir.7b00934.
[10] 王琳琳, 徐徐, 陈小鹏, 等.松脂的催化歧化反应产物的气相色谱-质谱分析[J].色谱, 2007, 25(3): 413-417.DOI:10.3321/j.issn:1000-8713.2007.03.028.
WANG L L, XU X, CHEN X P, et al.Characterization of the reaction products from pine gum catalytic disproportionation by gas chromatography/mass spectrometry[J].Chinese Journal of Chromatography, 2007, 25(3): 413-417.
[11] 王海峰, 姜占国, 马玉玲, 等.新型松香基阳离子Gemini表面活性剂的合成及分析[J].现代化工, 2012, 32(5): 79-81.DOI:10.16606/j.cnki.issn0253-4320.2012.05.017.
WANG H F, JIANG Z G, MA Y L, et al.Synthesis and analysis of novel rosin-based cationic Gemini surfactants[J].Modern Chemical Industry, 2012,32(5): 79-81.
[12] ALAMI E, BEINERT G, MARIE P, et al.Alkanediyl-.alpha.,.omega.-bis(dimethylalkylammonium bromide)surfactants.3.Behavior at the air-water interface[J].Langmuir, 1993, 9(6): 1465-1467.DOI:10.1021/la00030a006.
[13] 孙玉海, 董宏伟, 冯玉军, 等.系列阳离子双子表面活性剂的合成及其表面活性的研究[J].化学学报, 2006, 64(18): 1925-1928.DOI:10.3321/j.issn:0567-7351.2006.18.013.
SUN Y H, DONG H W, FENG Y J,et al.Synthesis and surface activity properties of a series of cationic gemini surfactants[J].Acta Chimica Sinica, 2006, 64(18): 1925-1928.
[14] CHU Z L, FENG Y J, SU X, et al.Wormlike micelles and solution properties of a C22-tailed amidosulfobetaine surfactant[J].Langmuir, 2010, 26(11): 7783-7791.DOI:10.1021/la9045822w.
[15] ISRAELACHVILI J N, MITCHELL D J, NINHAM B W.Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers[J].Journal of the Chemical Society, Faraday Transactions 2, 1976, 72: 1525.DOI:10.1039/f29767201525.
[16] 水玲玲, 郑利强, 赵剑曦, 等.双子表面活性剂体系的界面活性研究[J].精细化工, 2001, 18(2): 67-69, 82.DOI:10.13550/j.jxhg.2001.02.002.
SHUI L L, ZHENG L Q, ZHAO J X, et al.The surface tension study of gemini surfactant systems[J].Fine Chemicals, 2001, 18(2): 67-69, 82.

相似文献/References:

[1]林桂汕,阮战辉,段文贵*,等.新型丙烯海松酸基双酰胺-噻二唑化合物的合成及生物活性研究[J].林业工程学报,2017,2(02):45.[doi:10.13360/j.issn.2096-1359.2017.02.008]
 LIN Guishan,RUAN Zhanhui,DUAN Wengui*,et al.Synthesis and biological activity of novel acrylpimaric acid-based diamide-thiadiazole compounds[J].Journal of Forestry Engineering,2017,2(06):45.[doi:10.13360/j.issn.2096-1359.2017.02.008]
[2]张海波,蒋建新,商士斌*,等.(3-丙烯酰氧基)丙基(3-脱氢枞酰胺)丙基二甲基溴化铵的制备及性能[J].林业工程学报,2018,3(03):48.[doi:10.13360/j.Issn.2096-1359.2018.03.008]
 ZHANG Haibo,JIANG Jianxin,SHANG Shibin*,et al.Preparation and properties of 3-(acryloyloxy)-N-(3-(dehydroabietyl -1-carboxamido)-N,N-dimethylpropan-1-aminium bromide[J].Journal of Forestry Engineering,2018,3(06):48.[doi:10.13360/j.Issn.2096-1359.2018.03.008]
[3]梁辉,陈登峰,黄申林*.一种新型松香基表面活性剂在芳香醇常温水相氧化反应中的应用[J].林业工程学报,2018,3(06):75.[doi:10.13360/j.issn.2096-1359.2018.06.012]
 LIANG Hui,CHEN Dengfeng,HUANG Shenlin*.A novel rosin-based surfactant for oxidation of aromatic alcohols to ketones or aldehydes in water at room temperature[J].Journal of Forestry Engineering,2018,3(06):75.[doi:10.13360/j.issn.2096-1359.2018.06.012]

备注/Memo

备注/Memo:
收稿日期:2019-03-25 修回日期:2019-08-05 基金项目:江南大学大学生创新训练计划项目(2018081Z); 国家自然科学基金(31670575)。 作者简介:饶纤纤,女,研究方向为表面活性剂。通信作者:宋冰蕾,女,副教授。E-mail:ccfsbl@jiangnan.edu.cn
更新日期/Last Update: 2019-11-10