[1]尚倩倩,陈健强,杨晓慧,等.超疏水磁性纤维素气凝胶的制备及其吸油性能[J].林业工程学报,2019,4(06):105-111.[doi:10.13360/j.issn.2096-1359.2019.06.015]
 SHANG Qianqian,CHEN Jianqiang,YANG Xiaohui,et al.Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels[J].Journal of Forestry Engineering,2019,4(06):105-111.[doi:10.13360/j.issn.2096-1359.2019.06.015]
点击复制

超疏水磁性纤维素气凝胶的制备及其吸油性能()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
105-111
栏目:
生物质能源与材料
出版日期:
2019-11-20

文章信息/Info

Title:
Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels
文章编号:
2096-1359(2019)06-0105-07
作者:
尚倩倩12陈健强23杨晓慧12刘承果12胡云12周永红12*
1.中国林业科学研究院林产化学工业研究所,南京 210042; 2.南京林业大学,江苏省林业资源高效加工利用协同创新中心,南京 210037; 3.南京林业大学生物与环境学院,南京 210037
Author(s):
SHANG Qianqian12 CHEN Jianqiang23 YANG Xiaohui12 LIU Chengguo12 HU Yun12 ZHOU Yonghong12*
1.Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; 2.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; 3.College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
关键词:
超疏水 纤维素 气凝胶 磁响应 油水分离
Keywords:
superhydrophobic cellulose aerogel magnetic response oil/water separation
分类号:
O636.1
DOI:
10.13360/j.issn.2096-1359.2019.06.015
文献标志码:
A
摘要:
以水溶性的甲基纤维素和磁性Fe3O4纳米粒子为原料,经过共混、环氧氯丙烷交联及冷冻干燥等过程制备了磁性纤维素气凝胶,并进一步以十六烷基三甲氧基硅烷(HDTMS)为改性剂,通过化学气相沉积法对气凝胶进行改性,得到超疏水磁性纤维素气凝胶材料。采用扫描电镜(SEM)、红外光谱(FT-IR)和光学接触角测量仪对气凝胶的结构性能进行表征分析,结果表明所制备的气凝胶具有三维贯通的多孔网络结构,表面改性没有改变气凝胶的微观结构; 经HDTMS修饰后的磁性纤维素气凝胶具有超疏水和超亲油性能(水接触角为150.4°,油接触角为0°)。气凝胶展现出良好的油/水选择性和较高的油吸附能力,对多种油品和有机溶剂的吸附量达到45~98 g/g; 吸油后的气凝胶可通过磁铁快速回收。气凝胶具有可多次循环使用的性能,循环使用30次后吸附能力仍然保持在80%以上,可以通过简单的力学挤压把吸附的油挤出来,使得废油的回收利用过程变得简单,同时也有利于节约吸附材料,降低油水分离成本。
Abstract:
Because of the rapid development of manufacturing in the world, oil leakage and industrial pollution have occurred frequently and caused serious consequences, such as economic loss and environmental pollution.Therefore, developing functional materials for effective oil/water separation has become a global concern.Superhydrophobic cellulose aerogel is an attractive candidate for effective oily water treatments due to its lightweight, high porosity and renewability.However, the development of a low cost and facile method for the fabrication of superhydrophobic cellulose aerogel with eco-friendliness and reusability for large region oil/water separation still remains a challenge.In this work, methylcellulose and magnetic Fe3O4 nanoparticles were used as raw materials with epichlorohydrin as cross-linking agent for the fabrication of magnetic cellulose aerogels through blending, cross-linking reaction and freeze-drying processes.Thereafter, the superhydrophobic magnetic cellulose aerogel(SMMC)was obtained using hexadecyltrimethoxysilane(HDTMS)as the hydrophobic modifier via a chemical vapor deposition process.The surface morphology, chemical structure and surface wettability of the aerogel were characterized by the scanning electron microscope(SEM), Fourier transform infrared spectroscopy(FT-IR)and optical contact angle measuring instrument.The results showed that the as-prepared cellulose-based aerogel had three-dimensional porous network microstructure with the aggregations of Fe3O4 nanoparticles on the skeletons and the surface hydrophobic modification process had slight effect on the microstructure of the cellulose-based aerogel.The SMMC aerogel exhibited a low density of 0.014 2 g/cm3 and a high porosity of 98.86%.After the modification, the superhydrophobic and superoleophilic properties of the aerogel with water contact angle of 150.4° and oil contact angle of 0° were reached.Due to the excellent superhydrophobicity/superoleophilicity and high porosity, the SMMC aerogel showed good oil/water selectivity and excellent oil adsorption capacity as high as 45-98 g/g for various oil and organic solvents.The SMMC aerogel after oil absorption could be recovered quickly using magnets because of the presence of Fe3O4 nanoparticles.Moreover, the as-prepared superhydrophobic SMMC aerogel had outstanding recyclability and still maintained at least 80% oil adsorption capacity after 30 adsorption cycles.The adsorbed oil could be easily re-collected by squeezing the aerogels.These excellent properties of the superhydrophobic cellulose-based aerogel combined with its facile fabrication process make it a promising candidate for oil/water separation in marine environments.

参考文献/References:

[1] JERNELOV A.How to defend against future oil spills[J].Nature, 2010, 466: 182-183.DOI:10.1038/466182a.
[2] ABOU-ZEID R E, KHIARI R, EL-WAKIL N,et al.Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J].Biomacromolecules, 2019, 20(2): 573-597.DOI:10.1021/acs.biomac.8b00839.
[3] JIN C D, HAN S J, LI J P,et al.Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents[J].Carbohydrate Polymers, 2015, 123:150-156.DOI: 10.1016/j.carbpol.2015.01.056.
[4] PHANTHONG P, REUBROYCHAROEN P, KONGPARAKUL S,et al.Fabrication and evaluation of nanocellulose sponge for oil/water separation[J].Carbohydrate Polymers, 2018, 190: 184-189.DOI:10.1016/j.carbpol.2018.02.066.
[5] COCHIS A, BONETTI L, SORRENTINO R, et al.3D printing of thermo-responsive methylcellulose hydrogels for cell-sheet engineering[J].Materials, 2018, 11: 579.DOI: 10.3390/ma11040579.
[6] HIRUN N, TANTISHAIYAKUL V, SANGFAI T,et al.In situ mucoadhesive hydrogel based on methylcellulose/xyloglucan for periodontitis[J].Journal of Sol-Gel Science and Technology, 2019, 89: 531-542.DOI: 10.1007/s10971-018-4878-5.
[7] XU Z Y, JIANG X D, ZHOU H, et al.Preparation of magnetic hydrophobic polyvinyl alcohol(PVA)-cellulose nanofiber(CNF)aerogels as effective oil absorbents[J].Cellulose, 2018, 25: 1217.DOI: 10.1007/s10570-017-1619-9.
[8] HE J, ZHAO H Y, LI X L, et al.Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery [J].Journal of Hazardous Materials, 2018, 346: 199-207.DOI: 10.1016/j.jhazmat.2017.12.045.
[9] CAO L M, CHENG Z Z, YAN M W, et al.Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly[J].Chemical Engineering Journal, 2019, 363: 203-212.DOI:10.1016/j.cej.2019.01.126.
[10] ZHANG H,LI Y Q,XU Y G,et al.Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up[J].Physical Chemistry Chemical Physics, 2016, 18: 28297-28306.DOI: 10.1039/c6cp04932j.
[11] YUAN J K, LIU X G, AKBULUT O, et al.Superwetting nanowire membranes for selective absorption[J].Nature Nanotechnology, 2008, 3: 332-336.DOI:10.1038/nnano.2008.136.
[12] ZHENG Q F, CAI Z Y, GONG S Q.Green synthesis of polyvinyl alcohol(PVA)-cellulose nanofibril(CNF)hybrid aerogels and their use as superabsorbents[J].Journal of Materials Chemistry A, 2014, 2: 3110-3118.DOI:10.1039/C3TA14642A.
[13] ZHU Q, CHU Y, WANG Z K, et al.Robust superhydrophobic polyurethane sponge as a highly reusableoil-absorption material[J].Journal of Materials Chemistry A, 2013, 1: 5386-5393.10.1039/C3TA00125C.
[14] CONG H P, REN X C, WANG P, et al.Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J].ACS Nano, 2012, 6: 2693-2703.DOI: 10.1021/nn300082k.
[15] ZHANG L H, XU L D, SUN Y L, et al.Robust and durable superhydrophobic polyurethane sponge for oil/water separation[J].Industrial & Engineering Chemistry Research, 2016, 55: 11260-11268.DOI:10.1021/acs.iecr.6b02897.

相似文献/References:

[1]汪雪琴,李现艳,卢麒麟,等.硫氰酸钾/乙二胺(KSCN/ED)体系制备纤维素水凝胶[J].林业工程学报,2018,3(02):102.[doi:10.13360/j.issn.2096-1359.2018.02.017]
 WANG Xueqin,LI Xianyan,LU Qilin,et al.Preparation of cellulose hydrogels by potassium thiocyanate/ethylenediamine solvent[J].Journal of Forestry Engineering,2018,3(06):102.[doi:10.13360/j.issn.2096-1359.2018.02.017]
[2]王帅,陈思佳,王梓怡,等.聚醚离子液体在纤维素糖化过程中的亲水作用[J].林业工程学报,2018,3(05):57.[doi:10.13360/j.issn.2096-1359.2018.05.009]
 WANG Shuai,CHEN Sijia,WANG Ziyi,et al.Hydrophilic effect of PEG- linked ionic liquids in cellulose saccharification[J].Journal of Forestry Engineering,2018,3(06):57.[doi:10.13360/j.issn.2096-1359.2018.05.009]
[3]邓丛静,等.杏壳纤维素结构表征及热解特性分析[J].林业工程学报,2018,3(06):87.[doi:10.13360/j.issn.2096-1359.2018.06.014]
 DENG Congjing,MA Huanhuan,et al.Characterization and pyrolysis of apricot shell cellulose[J].Journal of Forestry Engineering,2018,3(06):87.[doi:10.13360/j.issn.2096-1359.2018.06.014]

备注/Memo

备注/Memo:
收稿日期:2019-04-06 修回日期:2019-08-22 基金项目:国家重点研发计划政府间国际科技创新合作重点专项(2017YFE0106800); 国家自然科学基金(31700522); 江苏省自然科学基金(BK20150072); 江苏省“双创计划”资助(苏人才办(2016)32号)。 作者简介:尚倩倩,女,副研究员,研究方向为纤维素基功能材料。通信作者:周永红,男,研究员。E-mail:zyh@icifp.cn
更新日期/Last Update: 2019-11-10