[1]邢力平,谭吉兴,马岩*,等.竹材去隔机刀具摆动机构的分析研究[J].林业工程学报,2019,4(06):121-126.[doi:10.13360/j.issn.2096-1359.2019.06.017]
 XING Liping,TAN Jixing,MA Yan*,et al.Analysis research of the swing mechanism of bamboo separator tool[J].Journal of Forestry Engineering,2019,4(06):121-126.[doi:10.13360/j.issn.2096-1359.2019.06.017]
点击复制

竹材去隔机刀具摆动机构的分析研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
121-126
栏目:
装备与信息化
出版日期:
2019-11-20

文章信息/Info

Title:
Analysis research of the swing mechanism of bamboo separator tool
文章编号:
2096-1359(2019)06-0121-06
作者:
邢力平谭吉兴马岩*任长清杨春梅杨存亮
东北林业大学林业与木工机械工程技术中心,哈尔滨 150040
Author(s):
XING Liping TAN Jixing MA Yan* REN Changqing YANG Chunmei YANG Cunliang
Engineering Technology Center of Forestry and Woodworking Machinery, Northeast Forestry University, Harbin 150040, China
关键词:
竹材 竹材去隔机 刀具摆动 运动仿真 瞬态动力学
Keywords:
bamboo bamboo separator tool swing motion simulation transient dynamics
分类号:
S777
DOI:
10.13360/j.issn.2096-1359.2019.06.017
文献标志码:
A
摘要:
针对竹材去隔机刀具摆动机构,阐述了刀具摆动机构的组成及工作原理,根据矢量方程构造了刀具摆动机构摆角与时间的数学模型,对去隔过程进行仿真分析。设定刀具摆动机构曲柄的转速为π/4 rad/s,对去隔机刀具摆动机构进行仿真,仿真结果表明:刀具中心摆动角度的变化范围为0°~90°,可对圆心角为90°的竹材进行去隔操作。采用Adams对竹材去隔机刀具摆动机构建立虚拟样机,同样以π/4 rad/s的曲柄转速对竹材去隔机去隔过程进行仿真。结果表明:刀具中心摆动范围与计算值相同,验证了数学模型的准确性,同时对连杆两端受力进行计算,得到连杆两端受力随时间变化的曲线,连杆受力发生周期性突变,最大受力约为190 N。将受力情况以表格的形式导入Ansys APDL对连杆进行瞬态动力学分析,仿真结果表明:连杆内应力约为1.3 MPa,远远小于材料的屈服极限,保证了去隔机工作的安全性,验证了设计的合理性。同时,结果表明:在对竹材去隔的过程中应力会发生突变,可能产生振动,去隔机应避免在其固有频率下工作。
Abstract:
Owing to the enlarged concerns of global warming, interest of utilizing bamboo has been greatly increased because bamboo can be a good alternative to wood in its various applications, which would decelerate the destruction of forests.However, because of the hollow outer circle of bamboo, it is difficult to be processed and utilized.As the rise of labor cost, the processing cost of bamboo also rises.Therefore, it is of great significance to accelerate the research and development of bamboo processing machinery.Aiming at designing the most efficient bamboo separator tool, the composition and working principle of the tool swing mechanism were elaborated.Based on the vector equation, the mathematical model of the swing angle and time of the tool swing mechanism was constructed, and the process of separating was simulated and analyzed.The crank speed of the tool swing mechanism was set to π/4 rad/s, and the tool swing mechanism of the separator was simulated.The simulation results showed that the center swing angle of the tool varied from 0° to 90°, and the bamboo with 90° of the center angle could be de-spaced.The virtual prototype of bamboo separator tool swing was built by Adams, and the process of bamboo separator separating was simulated by the crank speed of π/4 rad/s.The results showed that the swing range of the tool center was the same as the calculated value, which verified the accuracy of the mathematical model.At the same time, the force on the two ends of the connecting rod was calculated.The curves of the force on the two ends of the connecting rod changed with time were obtained.The maximum force on the connecting rod was about 190 N, and the force changed periodically.The force on the connecting rod was imported into Ansys APDL in the form of tables for the transient dynamic analysis of the connecting rod.The simulation results showed that the internal stress of the connecting rod was about 1.3 MPa, which was much less than the yield limit of the material.It ensured the safety of the separator and verified the rationality of the design.At the same time, the results showed that the stress would change abruptly in the process of removing bamboo, which may cause vibration.The separator should avoid working at its natural frequency.

参考文献/References:

[1] 李延军, 许斌, 张齐生, 等.我国竹材加工产业现状与对策分析[J].林业工程学报, 2016, 1(1): 2-7.DOI: 10.13360/j.issn.2096-1359.2016.01.001.
LI Y J, XU B, ZHANG Q S, et al.Present situation and the countermeasure analysis of bamboo timber processing industry in China[J].Journal of Forestry Engineering, 2016, 1(1): 2-7.
[2] 王皓, 林忠钦, 来新民.平面机械系统动力学建模的复合方法[J].中国科学(E辑), 2008, 38(5): 715-728.
WANG H, LIN Z Q, LAI X M.Composite method for dynamic modeling of planar mechanical systems[J].Science in China(Series E), 2008, 38(5): 715-728.
[3] 杨春红, 邵欣.机械压力机肘杆式工作机构运动学建模与分析[J].锻压技术, 2017, 42(12): 87-91.DOI: 10.13330/j.issn.1000-3940.2017.12.016.
YANG C H, SHAO X.Kinematics modeling and analysis on toggle mechanism for mechanical press[J].Forging & Stamping Technology, 2017, 42(12): 87-91.
[4] 王涛, 吴良凯, 王春丽, 等.基于Matlab与ADAMS的机械臂运动学建模与仿真[J].机械工程师, 2017(1): 58-60.DOI: 10.3969/j.issn.1002-2333.2017.01.020.
WANG T, WU L K, WANG C L, et al.Kinematics modeling and simulation of mechanical arm based on Matlab and ADAMS[J].Mechanical Engineer, 2017(1): 58-60.
[5] 黎高进.基于ADAMS的行星齿轮机构的运动学分析及仿真[J].南方农机, 2018, 49(19): 49-50.
LI G J.Kinematics analysis and simulation of planetary gear mechanism based on ADAMS[J].China Southern Agricultural Machinery, 2018, 49(19): 49-50.
[6] 金国光, 李文启, 魏展, 等.空间四连杆引纬机构刚柔耦合动力学分析与仿真[J].天津工业大学学报, 2018, 37(4): 72-77.DOI: 10.3969/j.issn.1671-024x.2018.04.013.
JIN G G, LI W Q, WEI Z, et al.Rigid-flexible coupling dynamics analysis and simulation of spatial four-bar linkage weft insertion mechanism[J].Journal of Tianjin Polytechnic University, 2018, 37(4): 72-77.
[7] 周明健, 王玉勤, 沈银杰.消防梯升降机构的运动学和动力学参数求解与仿真[J].蚌埠学院学报, 2018, 7(5): 23-27.DOI: 10.13900/j.cnki.jbc.2018.05.006.
ZHOU M J, WANG Y Q, SHEN Y J.Solution and simulation of the kinematics and dynamics parameters of fire ladder hoisting mechanism[J].Journal of Bengbu University, 2018, 7(5): 23-27.
[8] 马如奇, 郝双晖, 郑伟峰, 等.基于MATLAB与ADAMS的机械臂联合仿真研究[J].机械设计与制造, 2010(4): 93-95.DOI: 10.3969/j.issn.1001-3997.2010.04.038.
MA R Q, HAO S H, ZHENG W F, et al.Research on coordinated simulation of robot arm based on MATLAB and ADAMS[J].Machinery Design & Manufacture, 2010(4): 93-95.
[9] 杨永福, 习宝田, 李黎, 等.毛竹切削力的研究[J].北京林业大学学报, 2006, 28(4): 17-21.DOI: 10.3321/j.issn:1000-1522.2006.04.004.
YANG Y F, XI B T, LI L, et al.Cutting forces of moso bamboo[J].Journal of Beijing Forestry University, 2006, 28(4): 17-21.
[10] PAN H, TU Q A, LIN S, et al.Design and simulation of a combined cutting tool for whole bamboo[J].Recent Patents on Mechanical Engineering, 2017, 9(4): 299-304.DOI: 10.2174/2212797609666160927164049.
[11] 杜岳峰, 毛恩荣, 宋正河, 等.基于ADAMS的玉米植株收获过程仿真[J].农业机械学报, 2012, 43(S1): 106-111.DOI: 10.6041/j.issn.1000-1298.2012.S0.021.
DU Y F, MAO E R, SONG Z H, et al.Simulation on corn plants in harvesting process based on ADAMS[J].Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(S1): 106-111.
[12] 徐建飞, 范纪华, 任亮, 等.基于ADAMS和ANSYS工业机器人运动仿真与有限元分析[J].机床与液压, 2018, 46(15): 24-27.DOI: 10.3969/j.issn.1001-3881.2018.15.006.
XU J F, FAN J H, REN L, et al.Motion simulation and finite element analysis of industrial robot based on ADAMS and ANSYS[J].Machine Tool & Hydraulics, 2018, 46(15): 24-27.
[13] 盛亚鸣, 王少华, 张露.基于Ansys的桥梁伸缩装置瞬态动力学分析[J].起重运输机械, 2018(9): 97-101.DOI: CNKI:SUN:QZJJ.0.2018-09-039.
SHENG Y M, WANG S H, ZHANG L.Transient dynamics analysis of bridge expansion device based on Ansys[J].Hoisting and Conveying Machinery, 2018(9): 97-101.
[14] 刘璐, 任家骏, 李爱峰, 等.卷筒轴瞬态动力学分析与疲劳寿命估算[J].矿业研究与开发, 2018, 38(4): 90-93.DOI: 10.13827/j.cnki.kyyk.2018.04.020.
LIU L, REN J J, LI A F, et al.Transient dynamics analysis and fatigue life estimation of drum shaft[J].Mining Research and Development, 2018, 38(4): 90-93.

相似文献/References:

[1]王欣,周定国.我国人造板原材料的创新与可持续发展[J].林业工程学报,2009,23(01):5.
 WANG Xin,ZHOU Ding guo.Development and Innovation of Woodbased Panel Materials in China[J].Journal of Forestry Engineering,2009,23(06):5.
[2]董丽君,黄河浪*,赵明,等.不同含水率条件下竹材热处理内部温度变化规律[J].林业工程学报,2011,25(04):29.
 DONG Li jun,HUANG He lang,ZHAO Ming,et al.Influence of moisture content on internal temperature change of thermally treated bamboo[J].Journal of Forestry Engineering,2011,25(06):29.
[3]殷寿柏,黄河浪*,赵明,等.热处理方法对竹材失重率的影响[J].林业工程学报,2012,26(01):106.
 YIN Shou bai,HUANG He lang,ZHAO Ming,et al.Influence of heat treatment method on mass loss of bamboo[J].Journal of Forestry Engineering,2012,26(06):106.
[4]夏炎,赵毅力.低毒竹材防腐剂制备及防腐性能初探[J].林业工程学报,2012,26(06):89.
 XIA Yan,ZHAO Yi li.Study on preparation and performances of lowtoxicity bamboo preservatives[J].Journal of Forestry Engineering,2012,26(06):89.
[5]周明明,雍宬,莫翠招,等.不同浸渍处理方式对毛竹淀粉含量的影响[J].林业工程学报,2012,26(05):105.
 ZHOU Ming ming,YONG Cheng,MO Cui zhao,et al.Influence of impregnation treatments on starch content in moso bamboo[J].Journal of Forestry Engineering,2012,26(06):105.
[6]闫薇,崔海星,朱一辛*.竹材的拉伸短期蠕变行为及模拟[J].林业工程学报,2013,27(03):46.
 YAN Wei,CUI Hai xing,ZHU Yi xin.Analysis and simulation of Moso bamboo shortterm tensile creep behaviour[J].Journal of Forestry Engineering,2013,27(06):46.
[7]雍宬,周明明,关明杰*.超声空化对竹材微观结构及淀粉颗粒的影响[J].林业工程学报,2013,27(03):99.
 YONG Cheng,ZHOU Ming ming,GUAN Ming jie.Effect of ultrasonic cavitation on microscopic structure and starch granule of bamboo[J].Journal of Forestry Engineering,2013,27(06):99.
[8]曾武,黎建伟,黄仁基,等.农作物支撑用防腐竹材的耐腐性试验[J].林业工程学报,2013,27(05):78.
 ZENG Wu,LI Jian wei,HUANG Ren ji,et al.Decay resistance of preservativetreated bamboo for agricultural crops[J].Journal of Forestry Engineering,2013,27(06):78.
[9]徐有明,江泽慧,陆才瑞,等.湖北主要引种竹纤维特征和基本密度分析[J].林业工程学报,2013,27(06):44.
 XU You ming,JIANG Ze hui,LU Cai rui,et al.The fiber characteristics and basic density of main introduced bamboo species in Hubei Province[J].Journal of Forestry Engineering,2013,27(06):44.
[10]赵仁杰,杜春贵,赵明.径向竹篾帘复合板系列产品的研制[J].林业工程学报,2000,14(03):29.

备注/Memo

备注/Memo:
收稿日期:2019-03-05 修回日期:2019-04-16 基金项目:国家重点研发计划(2018YFD06003054); 哈尔滨市应用技术研究与开发项目(2017RAQXJ139)。 作者简介:邢力平,女,教授,研究方向为林业机械与木工机械。通信作者:马岩,男,教授。E-mail:mayan@vip.163.com
更新日期/Last Update: 2019-11-10