[1]黄学明,赵鲲鹏,王海波*,等.路用泡沫轻质土力学性能及浇筑技术研究[J].林业工程学报,2019,4(06):143-150.[doi:10.13360/j.issn.2096-1359.2019.06.020]
 HUANG Xueming,ZHAO Kunpeng,WANG Haibo*,et al.Investigation on mechanical properties and pouring technology of foamed lightweight soils[J].Journal of Forestry Engineering,2019,4(06):143-150.[doi:10.13360/j.issn.2096-1359.2019.06.020]
点击复制

路用泡沫轻质土力学性能及浇筑技术研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
4
期数:
2019年06期
页码:
143-150
栏目:
森林工程与土建交通
出版日期:
2019-11-20

文章信息/Info

Title:
Investigation on mechanical properties and pouring technology of foamed lightweight soils
文章编号:
2096-1359(2019)06-0143-08
作者:
黄学明赵鲲鹏王海波*吕伟华刘泽龙
南京林业大学,南京 210037
Author(s):
HUANG Xueming ZHAO Kunpeng WANG Haibo* LYU Weihua LIU Zelong
Nanjing Forestry University, Nanjing 210037, China
关键词:
泡沫轻质土 配合比 浇筑技术 影响规律
Keywords:
foamed lightweight soils construction mix proportion pouring technology influence rule
分类号:
TU528
DOI:
10.13360/j.issn.2096-1359.2019.06.020
文献标志码:
A
摘要:
针对泡沫土在工程应用中由于流动性不足导致的软弱夹层和透镜体,以及由于强度不够而引发的剪切裂缝和沉陷开裂等工程质量问题,开展一系列室内、现场的试验,分析了影响泡沫轻质土的抗压强度和流动性的主要因素,对现场浇筑过程中关键技术进行研究。结果表明:发泡剂类型、含量,水胶比,湿密度和矿粉、粉煤灰组分对泡沫轻质土流动性、成型后强度均有显著的影响。3种发泡剂所对应的轻质土土体强度基本表现为FLS-L-Ⅰ> FLS-S-Ⅰ> FLS-L-Ⅱ,流值随泡沫溶液含量的增大而减小,泡沫溶液质量分数宜控制在1.3%左右; 水胶比越大流动性越强,而成型后泡沫土抗压强度越小,水胶比取值宜控制在0.55~0.65; 湿密度与轻质土的抗压强度呈正相关而与其流值呈负相关,湿密度宜取550~650 kg/m3; 掺入一定的矿粉有助于提高泡沫土的强度,并存在15%的最佳掺量,而复掺粉煤灰将导致抗压强度的下降。施工关键技术控制方面,拌合时间、单层浇筑厚度及浇筑范围都对泡沫轻质土性能产生控制性影响,研究认为泡沫轻质土浇筑,单层浇筑厚度宜控制在0.3~0.6 m,单次最大浇筑距离宜控制在15 m范围内。上述研究成果为今后泡沫土工程应用中关键技术的控制提供有益参考。
Abstract:
In light of engineering problems, such as weak interlayer and lenses, shear and sink cracks in the application of foamed lightweight soils, which are mainly attributed to construction mix proportion and pouring technology, a series of indoor and field tests were conducted to analyze the influence of different factors.These factors include physical and mechanical properties such as fluidity, bulk density, and compressive strength related to construction mix proportion and the key technologies in the on-site pouring process.The results showed that the type and content of foaming agent and the water-binder ratio have significant effects on the flow ability and strength of foamed lightweight soil.The flow value is increased with the increase in water-binder ratio and decrease in foaming agent content.However, the increase in water-binder ratio causes the compressive strength to decrease, and the optimum content of 1.3% for foaming agent content and the optimum range from 0.55 to 0.65 for the water-binder ratio are proposed.In addition, the mix of mineral power benefits the increase in compressive strength, and the optimum mass content of 15% is also advised, but the double mix of fly ash causes the compressive strength to decrease significantly.At the same time, the key technologies are pointed out, which have effects on the foam performance of lightweight soil in the on-site pouring process, such as the pouring wet density within 550-650 kg/m3, the single grouting thickness within 0.3-0.6 m and the optimum grouting distance range of 15 meters.The above research results provide useful references for key technologies in application of foamed lightweight soils in the future.

参考文献/References:

[1] 陈忠平.气泡混合轻质填土新技术[M].北京:人民交通出版社, 2004.
CHEN Z P.The new technology of bubble mixed light soil about filling[M].Beijing: China Communications Press, 2004.
[2] 何国杰, 丁振洲, 郑颖人.气泡混合轻质土的研制及其性能[J].地下空间与工程学报, 2009, 5(1): 18-22.DOI:10.3969/j.issn.1673-0836.2009.01.004.
HE G J, DING Z Z, ZHENG Y R.Preparation of bubble mixed light soil and its properties[J].Chinese Journal of Underground Space and Engineering, 2009, 5(1): 18-22.
[3] 陈永辉, 石刚传, 曹德洪, 等.气泡混合轻质土置换路基控制工后沉降研究[J].岩土工程学报, 2011, 33(12): 1854-1862.DOI: 10.1016/S1005-0302(11)60029-7.
CHEN Y H, SHI G C, CAO D H, et al.Control of post-construction settlement by replacing subgrade with foamed cement banking[J].Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1854-1862.
[4] KIKUCHI Y, NAGATOME T, FUKUMOTO H, et al.Absorption property evaluation of light weight soil with air foam under wet sand condition[J].Journal of the Society of Materials Science Japan, 2008, 57(1):56-59.
[5] KIKUCHI Y, NAGATOME T, MIZUTANI T A, et al.The effect of air foam inclusion on the permeability and absorption properties of light weight soil[J].Soils and Foundations, 2011, 51(1): 151-165.DOI:10.3208/sandf.51.151.
[6] HORPIBULSUK S, SUDDEEPONG A, CHINKULKIJNIWAT A, et al.Strength and compressibility of lightweight cemented clays[J].Applied Clay Science, 2012, 69: 11-21.DOI:10.1016/j.clay.2012.08.006.
[7] HORPIBULSUK S, RACHAN R, SUDDEEPONG A, et al.Compressibility of lightweight cemented clays[J].Engineering Geology, 2013, 159: 59-66.DOI:10.1016/j.enggeo.2013.03.020.
[8] 董金梅, 王沛, 柴寿喜, 等.高分子材料SH固化轻质土的压缩变形特性[J].应用基础与工程科学学报, 2013, 21(2): 267-275.DOI:10.3969/j.issn.1005-0930.2013.02.008.
DONG J M, WANG P, CHAI S X, et al.Compression deformation characteristics of polymer SH solidified lightweight soil[J].Journal of Basic Science and Engineering, 2013, 21(2): 267-275.
[9] 梅利芳, 徐光黎.纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J].复合材料学报, 2016, 33(10): 2355-2362.DOI:10.13801/j.cnki.fhclxb.20160621.001.
MEI L F, XU G L.Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J].Acta Materiae Compositae Sinica, 2016, 33(10): 2355-2362.
[10] 姬凤玲.淤泥泡沫塑料颗粒轻质混合土力学特性研究[D].南京: 河海大学, 2005.
JI F L.Study on mechanical properties of lightweight bead-treated soil made from silt[D].Nanjing: Hohai University, 2005.
[11] WATABE Y, NOGUCHI T.Site-investigation and geotechnical design of d-runway construction in Tokyo Haneda Airport[J].Soils and Foundations, 2012, 51(6):1003-1018.
[12] 王庶懋, 高玉峰, 张益纯.动荷载下砂土与EPS颗粒混合的轻质土(LSES)的强度标准及破坏机理研究[J].河海大学学报(自然科学版), 2007, 35(2): 197-201.
WANG S M, GAO Y F, ZHANG Y C.Study on strength criteria and failure mechanism of lightweight sand-EPS beads soil(LSES)under dynamic loads[J].Journal of Hohai University(Natural Sciences), 2007, 35(2): 197-201.
[13] 高洪梅, 陈瑞, 童飞, 等.复杂应力条件下EPS颗粒轻质混合土的动模量和阻尼比特性[J].防灾减灾工程学报, 2015, 35(2): 166-172, 198.DOI:10.13409/j.cnki.jdpme.2015.02.004.
GAO H M, CHEN R, TONG F, et al.Dynamic modulus and damping ratio of EPS bead composite soil under complex stress conditions[J].Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2): 166-172, 198.
[14] 孔德森, 陈文杰, 贾腾, 等.动荷载作用下RST轻质土变形特性的试验研究[J].岩土工程学报, 2013, 35(S2): 874-878.
KONG D S, CHEN W J, JIA T, et al.Deformation characteristics of RST lightweight soils under dynamic loads[J].Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 874-878.
[15] 刘楷, 李仁民, 杜延军, 等.气泡混合轻质土干湿循环和硫酸钠耐久性试验研究[J].岩土力学, 2015, 36(S1): 362-366.DOI:10.16285/j.rsm.2015.S1.062.
LIU K, LI R M, DU Y J, et al.A durability experimental study of lightweight soil subjected to wetting-drying cycles and sodium sulfate soaking[J].Rock and Soil Mechanics, 2015, 36(S1): 362-366.
[16] 何国杰, 邓安仲, 王友军.冻融循环对气泡轻质土抗压强度的影响[J].后勤工程学院学报, 2012, 28(4): 1-6.DOI:10.3969/j.issn.1672-7843.2012.04.001.
HE G J, DENG A Z, WANG Y J.Influence of freeze-thaw cycles on compressive strength of bubble light soil[J].Journal of Logistical Engineering University, 2012, 28(4): 1-6.
[17] 章灿林, 黄俭才, 熊永松, 等.不同原料土掺量的气泡轻质土耐久性研究[J].武汉理工大学学报, 2014, 36(8): 32-36.DOI: 10.3963/j.issn.1671-4431.2014.08.006.
ZHANG C L, HUANG J C, XIONG Y S, et al.Durability of foamed cement banking with raw soil[J].Journal of Wuhan University of Technology, 2014, 36(8): 32-36.
[18] 陈赛墉, 金探宇, 顾瑾霞, 等.大型跨线路站房结合部过渡段铁路路基泡沫轻质土填筑技术[J].施工技术, 2017, 46(10): 31-33.DOI:10.7672/sgjs2017100031.
CHEN S Y, JIN T Y, GU J X, et al.Technology of filling construction of foamed light soil used in railway roadbed of the transition section of joint-part of large and cross-line station building[J].Construction Technology, 2017, 46(10): 31-33.
[19] 林乐彬.气泡混合轻质土在冻土地区路基病害防治中的研究[D].长春: 吉林大学, 2009.
LIN L B.Research of foamed cement banking worked in roadbed diseases prevention of in frozen earth region[D].Changchun: Jilin University, 2009.
[20] 梁斯, 黄俭才, 章灿林, 等.原料土对发泡轻质土性能和结构影响研究[J].公路, 2014, 59(11): 13-16.
LIANG S, HUANG J C, ZHANG C L, et al.Effect of raw soil on microstructure and properties of foamed cement banking[J].Highway, 2014, 59(11): 13-16.
[21] 陈谊.不同因素对泡沫轻质土抗压强度的影响[J].湖南交通科技, 2018, 44(2): 126-129.
CHEN Y.Effect of different factors on compressive strength of foam light soil[J].Hunan Communication Science and Technology, 2018, 44(2): 126-129.
[22] 李迎春, 钱春香, 刘松玉, 等.粉土固化稳定机理研究[J].岩土工程学报, 2004, 26(2): 268-271.DOI: 10.3321/j.issn:1000-4548.2004.02.023.
LI Y C, QIAN C X, LIU S Y, et al.Mechanism of silt stabilization[J].Chinese Journal of Geotechnical Engineering, 2004, 26(2): 268-271.
[23] 居月, 沈君, 王元纲, 等.复合掺合料对混凝土碱集料反应的抑制作用[J].林业工程学报, 2016, 1(3): 121-126.DOI:10.13360/j.issn.2096-1359.2016.03.022.
JU Y, SHEN J, WANG Y G, et al.Study on inhibitory role of compound admixture on alkali-aggregate reaction in concrete[J].Journal of Forestry Engineering, 2016, 1(3): 121-126.
[24] 王海波, 赵志峰, 张甜.季节性冻融对滞洪区改良路基性能的影响[J].南京林业大学学报(自然科学版), 2016, 40(3): 156-162.DOI:10.3969/j.issn.1000-2006.2016.03.026.
WANG H B, ZHAO Z F, ZHANG T.Performance of improved soil subgrade under freeze-thaw cycles in flood retarding basin[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(3): 156-162.

备注/Memo

备注/Memo:
收稿日期:2018-08-04 修回日期:2019-06-13 基金项目:国家自然科学基金(51508279); 江苏省自然科学基金(BK20150885)。 作者简介:黄学明,男,工程师,研究方向为建筑质量控制和技术管理。通信作者:王海波,男,高级实验师。E-mail:harbor006@foxmail.com
更新日期/Last Update: 2019-11-10