[1]吴慧,李文焰,赵梦婵,等.纤维素基自愈合凝胶研究现状[J].林业工程学报,2020,5(01):11-17.[doi:10.13360/j.issn.2096-1359.201907031]
 WU Hui,LI Wenyan,ZHAO Mengchan,et al.Progress in cellulose-based self-healing gels[J].Journal of Forestry Engineering,2020,5(01):11-17.[doi:10.13360/j.issn.2096-1359.201907031]
点击复制

纤维素基自愈合凝胶研究现状()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
11-17
栏目:
专论综述
出版日期:
2020-01-07

文章信息/Info

Title:
Progress in cellulose-based self-healing gels
文章编号:
2096-1359(2020)01-0011-07
作者:
吴慧李文焰赵梦婵卢生昌黄六莲陈礼辉
福建农林大学材料工程学院,福州 350108
Author(s):
WU Hui LI Wenyan ZHAO Mengchan LU Shengchang HUANG Liulian CHEN Lihui
College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
关键词:
纤维素 凝胶 自愈合 机理 结构
Keywords:
cellulose gel self-healing mechanism structure
分类号:
TQ352.4
DOI:
10.13360/j.issn.2096-1359.201907031
文献标志码:
A
摘要:
纤维素是自然界丰富的天然有机高分子,具有价廉易得、环境友好、力学性能良好等优点,开发和利用空间非常广阔。传统水凝胶存在力学强度差、结构功能单一等问题,而引入纤维素及其衍生物是改善其性能的一种重要手段。因此通过物理或者化学方法对纤维素进行改性,制备具有自愈合性能的凝胶,受到科技工作者的广泛关注和研究。笔者以物理型和化学型自愈合凝胶为主线,综述了近年来采用纤维素制备自愈合材料的研究进展,为纤维素基自愈合凝胶的制备和应用提供参考。以纤维素基凝胶的自愈合机理进行分类,重点介绍了利用氢键、疏水相互作用、主-客体相互作用、金属配位作用和静电作用等物理作用,以及硼酸酯键、双硫键、酰腙键、烯胺键和Diels-Alder反应等化学作用构建的凝胶。分析了自愈合凝胶的设计思路,探讨了凝胶自愈合性能的影响因素,同时总结了基于纤维素制备的自愈合凝胶的结构特性及其在柔性电子、生物医疗、组织工程等方面的应用。最后,探讨了纤维素基自愈合凝胶所面临的问题,并展望了其研究前景。
Abstract:
With the increasing concerns on sustainable utilization of resources and environmental problems, it is necessary to develop self-healing and environmental-friendly materials. The self-healing materials can restore their functionalities and structures after damages, which not only can prolong the service life, but also can decrease the maintenance cost of materials. Inspired by nature, smart self-healing materials have developed to inherently repair internal and external damages under different stimulus. Cellulose, as one of the most abundant natural organic polymers, has been used broadly in various fields due to its low cost, environmentally friendly, and good mechanical properties. Owing to the high intensity of hydroxyl groups along the skeleton of cellulose, cellulose can be converted to functional materials through physical and/or chemical modifications. It is meaningful to incorporate cellulose or cellulose derivatives into traditional hydrogels to efficiently solve their intrinsic problems, including poor mechanical strength and performance. Therefore, self-healing gels prepared by cellulose or cellulose derivatives have attracted extensive attention. The appropriate choice of functional groups attached to cellulose and preparation conditions for the fabrication of high-performance gels can expand application of cellulose-based self-healing gels in the industry, agriculture, biomedicine, soft machine, etc. In this paper, the progress in self-healing cellulose-based gels are reviewed, which is expected to provide useful information for preparation and application of cellulose-based self-healing gels. With the physical mixing or chemical reactions, diverse self-healing cellulose-based gels are designed by introducing desired functional groups onto cellulose chains. Based on their various self-healing mechanisms, the gels fabricated using the dynamic physical interactions including hydrogen bonds, hydrophobic interaction, host-guest interaction, coordination interaction, electronic interaction, and chemical interactions including boronate complexation, disulfide bond, acylhydrazone bond, enamine bond, and Diels-Alder reaction are demonstrated in detail. The methods to design self-healing gels are analyzed and the influencing factors on self-healing properties of gels are discussed. The structure and application of self-healing gels in the fields of flexible electronic device, biomedical, and tissue engineering are summarized. Also, the self-healing gels with novel and excellent properties, such as luminescent, conductive, and multi-responsive properties are highlighted. For the challenging problems such as slow self-healing speed, complicated preparation process, weak mechanical strength, and single performance for the self-healing gel, the perspective on the preparation and application of cellulose-based gels are proposed.

参考文献/References:

[1] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose:fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393. DOI:10.1002/anie.200460587.
[2] GARCIA-VALDEZ O, CHAMPAGNE P, CUNNINGHAM M F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization[J]. Progress in Polymer Science, 2018, 76: 151-173. DOI:10.1016/j.progpolymsci.2017.08.001.
[3] WU H, WU L, LU S, et al. Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation[J]. Carbohydrate Polymers, 2018, 181: 419-425. DOI:10.1016/j.carbpol.2017.08.078.
[4] LU S, TANG Z, LI W, et al. Diallyl dimethyl ammonium chloride-grafted cellulose filter membrane via ATRP for selective removal of anionic dye[J]. Cellulose, 2018, 25(12): 7261-7275. DOI:10.1007/s10570-018-2052-4.
[5] LIN X, MA W, WU H, et al. Superhydrophobic magnetic poly(DOPAm-co-PFOEA)/Fe3O4/cellulose microspheres for stable liquid marbles[J]. Chemical Communications, 2016, 52(9): 1895-1898. DOI:10.1039/C5CC08842A.
[6] LIN X, MA W, CHEN L, et al. Self-healing cellulose nanocrystal-stabilized droplets for water collection under oil[J]. Soft Matter, 2018, 14(46): 9308-9311. DOI:10.1039/c8sm01852a.
[7] LIN X, MA W, CHEN L, et al. Influence of water evaporation/absorption on the stability of glycerol-water marbles[J]. Rsc Advances, 2019, 9(59): 34465-34471. DOI:10.1039/C9RA05728E.
[8] LIN Z, CAO S, CHEN X, et al. Thermoresponsive hydrogels from phosphorylated ABA triblock copolymers: a potential scaffold for bone tissue engineering[J]. Biomacromolecules, 2013, 14(7): 2206-2214. DOI:10.1021/bm4003442.
[9] SHI X N, ZHENG Y D, WANG C, et al. Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel[J]. RSC Advances, 2015, 5(52): 41820-41829. DOI:10.1039/c5ra04897d.
[10] WANG W T, FAN X Q, LI F H, et al. Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display[J]. Advanced Optical Materials, 2018, 6(4): 1701093. DOI:10.1002/Adom.201701093.
[11] DAS S, CHAKRABORTY P, MONDAL S, et al. Enhancement of energy storage and photoresponse properties of folic-acid polyaniline hybrid hydrogel by in situ growth of Ag nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28055-28067. DOI:10.1021/acsami.6b09468.
[12] BUENGER D, TOPUZ F, GROLL J. Hydrogels in sensing applications[J]. Progress in Polymer Science, 2012, 37(12): 1678-1719. DOI:10.1016/j.progpolymsci.2012.09.001.
[13] SUN M, BAI R B, YANG X Y, et al. Hydrogel interferometry for ultrasensitive and highly selective chemical detection[J]. Advanced Materials, 2018, 30(46): 1804916. DOI:10.1002/Adma.201804916.
[14] LI J, CELIZ A D, YANG J, et al.Tough adhesives for diverse wet surfaces[J]. Science, 2017, 357(6349): 378-381. DOI:10.1126/science.aah6362.
[15] QIU Y, PARK K. Environment-sensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews, 2001, 53(3): 321-339. DOI:10.1016/s0169-409x(01)00203-4.
[16] CHANG C Y, ZHANG L N.Cellulose-based hydrogels: present status and application prospects[J]. Carbohydrate Polymers, 2011, 84(1): 40-53. DOI:10.1016/j.carbpol.2010.12.023.
[17] CALVERT P. Hydrogels for soft machines[J]. Advanced Materials, 2009, 21(7): 743-756. DOI:10.1002/adma.200800534.
[18] WEI Z, YANG J H, ZHOU J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23): 8114-8131. DOI:10.1039/c4cs00219a.
[19] YANG Y, DING X, URBAN M W. Chemical and physical aspects of self-healing materials[J]. Progress in Polymer Science, 2015, 49-50: 34-59. DOI:10.1016/j.progpolymsci.2015.06.001.
[20] ZHENG W J, GAO J, WEI Z, et al.Facile fabrication of self-healing carboxymethyl cellulose hydrogels[J]. European Polymer Journal, 2015, 72: 514-522. DOI:10.1016/j.eurpolymj.2015.06.013.
[21] WANG Y X, WANG Z C, WU K L, et al. Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties[J]. Carbohydrate Polymers, 2017, 168: 112-120. DOI:10.1016/j.carbpol.2017.03.070.
[22] TEE B C K, WANG C, ALLEN R, et al. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications[J]. Nature Nanotechnology, 2012, 7(12): 825-832. DOI:10.1038/Nnano.2012.192.
[23] CHENY L, KUSHNERA M, WILLIAMS G A, et al. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nature Chemistry, 2012, 4(6): 467-472. DOI:10.1016/j.eurpolymj.2017.06.008.
[24] BIYANI M V, FOSTER E J, WEDER C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS Macro Letters, 2013, 2(3): 236-240. DOI:10.1021/mz400059w.
[25] MREDHA M T I, GUO Y Z, NONOYAMA T, et al.A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures[J]. Advanced Materials, 2018, 30(9): 1704937. DOI:10.1002/Adma.201704937.
[26] KONG W, WANG C, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30: 1801934. DOI:10.1002/adma.201801934.
[27] HUANG W, WANG Y, MCMULLEN L M, et al. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels[J]. Carbohydrate Polymers, 2019, 222: 114977. DOI:10.1016/j.carbpol.2019.114977.
[28] YANG W X, SHAO B W, LIU T Y, et al. Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8245-8257. DOI:10.1021/acsami.7b18700.
[29] TUNCABOYLU D C, ARGUN A, ALGI M P, et al. Autonomic self-healing in covalently crosslinked hydrogels containing hydrophobic domains[J]. Polymer, 2013, 54(23): 6381-6388. DOI:10.1016/j.polymer.2013.09.051.
[30] TUNCABOYLU D C, SARI M, OPPERMANN W, et al.Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011, 44(12): 4997-5005. DOI:10.1021/ma200579v.
[31] MCKEE J R, APPEL E A, SEITSONEN J, et al. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods[J]. Advanced Functional Materials, 2014, 24(18): 2706-2713. DOI:10.1002/adfm.201303699.
[32] TAMESUE S, TAKASHIMA Y, YAMAGUCHI H, et al.Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers[J]. Angewandte Chemie International Edition, 2010, 49(41): 7461-7464. DOI:10.1002/anie.201003567.
[33] HIMMELEIN S, LEWE V, STUART M C A, et al. A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers[J]. Chemical Science, 2014, 5(3): 1054-1058. DOI:10.1039/c3sc52964a.
[34] FAN X C, WANG T, MIAO W K. The preparation of pH-sensitive hydrogel based on host-guest and electrostatic interactions and its drug release studies in vitro[J]. Journal of Polymer Research, 2018, 25(10): 215. DOI:10.1007/S10965-018-1608-1.
[35] SHAO C Y, CHANG H L, WANG M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28305-28318. DOI:10.1021/acsami.7b09614.
[36] SHAO C Y, WANG M, MENG L, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties[J]. Chemistry of Materials, 2018, 30(9): 3110-3121. DOI:10.1021/acs.chemmater.8b01172.
[37] CHEN Y M, SUN L, YANG S A, et al. Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels[J]. European Polymer Journal, 2017, 94: 501-510. DOI:10.1016/j.eurpolymj.2017.06.008.
[38] HUSSAIN I, SAYED S M, LIU S L, et al. Hydroxyethyl cellulose-based self-healing hydrogels with enhanced mechanical properties via metal-ligand bond interactions[J]. European Polymer Journal, 2018, 100: 219-227. DOI:10.1016/j.eurpolymj.2018.01.002.
[39] HUSSAIN I, SAYED S M, LIU S, et al. Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions[J]. European Polymer Journal, 2018, 105: 85-94. DOI:10.1016/j.eurpolymj.2018.05.025.
[40] ZHANG X F, MA X, HOU T, et al. Inorganic salts induce thermally reversible and anti-freezing cellulose hydrogels[J]. Angewandte Chemie International Edition, 2019, 58(22): 7366-7370.
[41] MERINDOL R, DIABANG S, FELIX O, et al. Bio-inspired multiproperty materials: strong, self-healing, and transparent artificial wood nanostructures[J]. ACS Nano, 2015, 9(2): 1127-1136. DOI:10.1021/nn504334u.
[42] KHAMRAI M, BANERJEE S L, KUNDU P P. Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application[J]. Carbohydrate Polymers, 2017, 174: 580-590. DOI:10.1016/j.carbpol.2017.06.094.
[43] LUO F, SUN T L, NAKAJIMA T, et al. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels[J]. Advanced Materials, 2015, 27(17): 2722-2727. DOI:10.1002/adma.201500140.
[44] LU B, LIN F, JIANG X, et al.One-pot assembly of microfibrillated cellulose reinforced pva-borax hydrogels with self-healing and ph-responsive properties[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 948-956. DOI:10.1021/acssuschemeng.6b02279.
[45] SPOLJARIC S, SALMINEN A, LUONG N D, et al. Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol)and borax via reversible crosslinking[J]. European Polymer Journal, 2014, 56(7): 105-117. DOI:10.1016/j.eurpolymj.2014.03.009.
[46] LIU K, PAN X F, CHEN L H, et al. Ultrasoft self-healing nanoparticle-hydrogel composites with conductive and magnetic properties[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6395-6403. DOI:10.1021/acssuschemeng.8b00193.
[47] BIAN H Y, JIAO L, WANG R B, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal, 2018, 107: 267-274. DOI:10.1016/j.eurpolymj.2018.08.028.
[48]LI W Y, LU S C, ZHAO M C, et al. Self-healing cellulose nanocrystals-containing gels via reshuffling of thiuram disulfide bonds[J]. Polymers, 2018, 10(12): 1392. DOI:10.3390/Polym10121392.
[49] YANG X F, LIU G Q, PENG L, et al.Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture[J]. Advanced Functional Materials, 2017, 27(40): 1703134. DOI:10.1002/adfm.201703174.
[50] LIU H, LI C, WANG B, et al. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties[J]. Cellulose, 2017, 25(1): 559-571. DOI:10.1007/s10570-017-1546-9.
[51] HUANG W, WANG Y, HUANG Z, et al.On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41076-41088. DOI:10.1021/acsami.8b14526.
[52] YANG W, WU X, LIU F, et al. A fluorescent, self-healing and pH sensitive hydrogel rapidly fabricated from HPAMAM and oxidized alginate with injectability[J]. RSC Advances, 2016, 6(41): 34254-34260. DOI:10.1039/C6RA02366E.
[53] SHAO C Y, WANG M, CHANG H L, et al. A self-healing cellulose nanocrystal-poly(ethylene glycol)nanocomposite hydrogel via diels-alder click reaction[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 6167-6174. DOI:10.1021/acssuschemeng.7b01060.
[54] AMAMOTO Y, KAMADA J, OTSUKA H, et al. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units[J]. Angewandte Chemie International Edition, 2011, 50(7): 1660-1663. DOI:10.1002/anie.201003888.
[55] AMAMOTO Y, OTSUKA H, TAKAHARA A, et al. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials, 2012, 24(29): 3975-3980. DOI:10.1002/adma.201201928.
[56] AN S Y, NOH S M, OH J K. Multiblock copolymer-based dual dynamic disulfide and supramolecular crosslinked self-healing networks[J]. Macromolecular Rapid Communications, 2017, 38(8): 1600777. DOI:10.1002/marc.201600777.
[57] LIU Y L, CHUO T W. Self-healing polymers based on thermally reversible Diels-Alder chemistry[J]. Polymer Chemistry, 2013, 4(7): 2194-2205. DOI:10.1039/c2py20957h.

相似文献/References:

[1]吴燕,吴智慧,沈永宝.天然纤维微/纳米纤丝改性家具涂料的可行性[J].林业工程学报,2010,24(06):15.
[2]吴燕.三聚氰胺浸渍液添加纤维素微/纳纤丝改性试验[J].林业工程学报,2013,27(02):71.
 WU Yan.Research on melamine formaldehyde resin modified by cellulose micro/nano fibrils[J].Journal of Forestry Engineering,2013,27(01):71.
[3]廖传华,张龙飞,陈海军,等.纤维素超临界水水解技术研究进展[J].林业工程学报,2015,29(06):7.[doi:10.13360/j.issn.1000-8101.2015.06.002]
[4]忻萍萍,史浩婷,牛逊,等.纤维素在四己基醋酸铵/ 助溶剂 混合体系中的溶解及再生[J].林业工程学报,2016,1(05):58.[doi:10.13360/j.issn.2096-1359.2016.05.011]
 XIN Pingping,SHI Haoting,NIU Xun,et al.Dissolution and regeneration of cellulose in tetrahexylammonium acetate/co-solvent system[J].Journal of Forestry Engineering,2016,1(01):58.[doi:10.13360/j.issn.2096-1359.2016.05.011]
[5]马明国,付连花,李亚瑜,等.纤维素基复合材料及其在医用方面的研究进展[J].林业工程学报,2017,2(06):1.[doi:10.13360/j.issn.2096-1359.2017.06.001]
 MA Mingguo,FU Lianhua,LI Yayu,et al.Research progress of cellulose-based biomedical functional composites[J].Journal of Forestry Engineering,2017,2(01):1.[doi:10.13360/j.issn.2096-1359.2017.06.001]
[6]吴清林,梅长彤,韩景泉,等.纳米纤维素制备技术及产业化现状[J].林业工程学报,2018,3(01):1.[doi:10.13360/j.issn.2096-1359.2018.01.001]
 WU Qinglin,MEI Changtong,HAN Jingquan,et al.Preparation technology and industrialization status of nanocellulose[J].Journal of Forestry Engineering,2018,3(01):1.[doi:10.13360/j.issn.2096-1359.2018.01.001]
[7]韩明会,刘彦涛,朱妙馨,等.不同温度下分级水提罗望子多糖的结构与性质[J].林业工程学报,2018,3(05):71.[doi:10.13360/j.issn.2096-1359.2018.05.011]
 HAN Minghui,LIU Yantao,ZHU Miaoxin,et al.Structure and solution properties of tamarind polysaccharide extracted at different temperatures[J].Journal of Forestry Engineering,2018,3(01):71.[doi:10.13360/j.issn.2096-1359.2018.05.011]
[8]许凤,陈阳雷,游婷婷,等.纤维素溶解机理研究述评[J].林业工程学报,2019,4(01):1.[doi:10.13360/j.issn.2096-1359.2019.01.001]
 XU Feng,CHEN Yanglei,YOU Tingting,et al.Research progress on mechanism of cellulose dissolution[J].Journal of Forestry Engineering,2019,4(01):1.[doi:10.13360/j.issn.2096-1359.2019.01.001]

备注/Memo

备注/Memo:
收稿日期:2019-07-19 修订日期:2019-10-18
基金项目:国家自然科学基金(21774021); 闽江学者奖励计划(KXNAD002A); 福建农林大学校国际科技合作与交流项目(KXB16002A)。
作者简介:吴慧,男,教授,研究方向为植物资源化学与新材料。E-mail: wuhui@fafu.edu.cn
更新日期/Last Update: 2019-12-10