[1]李伟光,许亚东,冒旭东,等.不同织构形式硬质合金表面与木材径切面的摩擦性能[J].林业工程学报,2020,5(01):29-33.[doi:10.13360/j.issn.2096-1359.201903024]
 LI Weiguang,XU Yadong,MAO Xudong,et al.Study on friction performance between wood radial section and cemented carbide surface with different micro-textures[J].Journal of Forestry Engineering,2020,5(01):29-33.[doi:10.13360/j.issn.2096-1359.201903024]
点击复制

不同织构形式硬质合金表面与木材径切面的摩擦性能()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
29-33
栏目:
木材科学与技术
出版日期:
2020-01-07

文章信息/Info

Title:
Study on friction performance between wood radial section and cemented carbide surface with different micro-textures
文章编号:
2096-1359(2020)01-0029-05
作者:
李伟光13许亚东2冒旭东2张占宽3*
1.中国林业科学研究院林业新技术研究所,北京 100091; 2. 南通跃通数控设备有限公司,江苏 南通 226600; 3.中国林业科学研究院木材工业研究所,北京 100091
Author(s):
LI Weiguang13 XU Yadong2 MAO Xudong2 ZHANG Zhankuan3*
1. Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; 2. Nantong Yuetong CNC Equipment Co. Ltd, Nantong 226600, Jiangsu, China; 3. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
关键词:
木材切削 微织构 摩擦系数 摩擦特性
Keywords:
wood cutting micro-texture friction coefficient friction characteristics
分类号:
TS643
DOI:
10.13360/j.issn.2096-1359.201903024
文献标志码:
A
摘要:
合理的微坑型微织构已被证明具有改善木材和硬质合金表面间的摩擦特性。采用微凹坑型织构、微凹槽织构和微网格型织构3种织构形式,在相同织构面积占有率条件下,通过摩擦特性试验与理论分析相结合,研究不同织构形式对木材表面摩擦系数的影响。研究表明:在相同织构面积占有率条件下,不同织构的类型和表面形貌对硬质合金试样与木材表面摩擦的摩擦系数有不同的影响,受摩擦长度、凹槽微织构宽度、微织构角度等织构参数的影响。当微织构与木材发生摩擦时,摩擦区域织构面积越大说明两者间实际接触面积越小,且面积越大,捕捉磨屑和硬质点的能力越强; 而主制动力越小,其产生的摩擦系数越小。在相同压力和织构面积占有率条件下,不同类型的织构试件与木材表面产生的摩擦系数均小于非织构(平面)型表面产生的摩擦系数。其中:微坑型织构产生的表面摩擦系数最小,为0.116; 凹槽型织构产生的表面摩擦系数最大,为0.182; 网格型织构随着织构角度的减小,其产生摩擦系数越小。
Abstract:
Reasonable micro-pit texture has been proved to be able to improve the friction characteristics between wood and cemented carbide. In this paper, the influence of micro-pit texture, micro-groove texture and micro-grid texture on friction coefficient was investigated. Under the condition of the same texture area occupancy, the influence of different texture types on the friction coefficient of wood surface was studied by the friction characteristic test. The results showed that the friction coefficient between the cemented carbide and wood surface was influenced by the texture type and surface morphology under the same texture area occupancy, and the friction length, the width of micro-texture and the angle of micro-texture would affect the texture parameters. When the friction occurred between the micro-textured specimens and the wood, the larger friction area with textured, the smaller the actual contact area between the wood and texture surface, and the larger the area, the stronger the ability to capture wear debris and harder points were obtained. The smaller the main braking force was, the smaller the friction coefficient was achieved. Under the condition of the same texture area occupancy, the friction coefficient between the different types of textured specimens and the wood surface was smaller than that between the non-textured surface and the wood. The surface friction coefficient of micro-pit texture was the smallest, presenting as 0.116. The surface friction coefficient of the micro-groove texture was the largest, giving as a value of 0.182. The micro-grid texture had the smaller friction coefficient with the decrease of the texture angle and the friction coefficient was between 0.134 and 0.151. The aims of this study were to improve the friction characteristics between wood and cemented carbide surfaces, reduce the surface friction coefficient, and find the best texture form. The results of this study can provide reference and guidance for the design of more reasonable surface texture form of wood cutting tools.

参考文献/References:

[1] 李伟光, 张占宽. 表面微织构硬质合金对桦木摩擦特性的影响[J]. 林业工程学报, 2018, 3(1): 103-108. DOI:10.13360/j.issn.2096-1359.2018.01.017.
LI W G, ZHANG Z K. Effect of surface micro-texture cemented carbide on friction characteristics of birch[J]. Journal of Forestry Engineering, 2018, 3(1): 103-108.
[2] 易斌. 硬质合金刀具材料激光微织构表面摩擦磨损特性研究[D]. 湘潭: 湘潭大学, 2014.
YI B. Study on friction and wearcharacteristics of laser micro-textured surface on cemented carbides tool materials[D]. Xiangtan: Xiangtan University, 2014.
[3] KAWASEGI N, SUGIMORI H, MORIMOTO H, et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior [J]. Precision Engineering, 2009, 33: 248-254. DOI:10.1016/j.precisioneng.2008.07.005.
[4] DUAN R, DENG J X, GE D L, et al. An approach to predict derivative-chip formation in derivative cutting of micro-textured tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1/2/3/4): 973-982. DOI:10.1007/s00170-017-1285-y.
[5] 邱孝聪, 樊曙天, 伍勇. 表面织构改善摩擦磨损性能的研究进展[J]. 润滑与密封, 2013, 38(8): 121-124. DOI:10.3969/j.issn.0254-0150.2013.08.025.
QIU X C, FAN S T, WU Y. Study of surface texture for improving friction and wear properties[J]. Lubrication Engineering, 2013, 38(8): 121-124.
[6] LI W G, ZHANG Z K. Effect of micro-pit texture parameters on characteristics of friction between cemented carbide and wood[J]. Wood Science and Technology, 2019, 53(3): 687-702. DOI:10.1007/s00226-019-01091-2.
[7] LI W G, ZHANG Z K. Tribological behavior of microtextured cemented carbide in contact with wood[J]. Forest Products Journal, 2018, 68(4): 465-470. DOI:10.13073/FPJ-D-17-00068.
[8] BEER P, GOGOLEWSKI P, KLIMKE J, et al. Tribological behaviour of sub-micron cutting-ceramics in contact with wood-based materials[J]. Tribology Letters, 2007, 27(2): 155-158. DOI:10.1007/s11249-007-9212-2.
[9] 曹平祥. 木工刀具抗磨技术进展[J]. 林业科技开发, 1997, 11(6): 10-12. DOI:10.13360/j.issn.1000-8101.1997.06.004.
CAO P X. The progress of woodworking tools anti-wear technology[J]. China Forestry Science and Technology, 1997, 11(6): 10-12.
[10] GUO X L, ZHU Z L, EKEVAD M, et al. The cutting performance of Al2O3 and Si3N4 ceramic cutting tools in the milling plywood.[J]. Advances in Applied Ceramics, 2017, 117(1): 16-22. DOI:10.1080/17436753.2017.1368946.
[11] MCKENZIE W M, KARPOVICH H. The frictional behaviour of wood[J]. Wood Science and Technology, 1968, 2(2): 139-152. DOI:10.1007/BF00394962.
[12] LI R R, CAO P X, ZHANG S, et al. Prediction of cutting force during gypsum fiber composite milling process using response surface methodology[J]. Wood and Fiber Science, 2017, 49(4): 453-460.
[13] MCKENZIE W M. Friction coefficient as a guide to optimum rake angle in wood machining[J]. Wood Science and Technology, 1991, 25(5): 397-401. DOI:10.1007/BF00226179.
[14] BOWDEN F, TABOR D. The friction and lubrication of solids[M]. London: Oxford University Press, 1950.
[15] 郭晓磊, 朱南峰, 王洁, 等. 切削速度和切削厚度对纤维板切削力和表面粗糙度的影响[J]. 林业工程学报, 2016, 1(4): 114-117. DOI:10.13360/j.issn.2096-1359.2016.04.019.
GUO X L, ZHU N F, WANG J, et al. Effect of cutting speed and chip thickness on cutting forces and surface roughness of fiberboard[J]. Journal of Forestry Engineering, 2016, 1(4): 114-117.

相似文献/References:

[1]李伟光,张占宽*.表面微织构硬质合金对桦木摩擦特性的影响[J].林业工程学报,2018,3(01):103.[doi:10.13360/j.issn.2096-1359.2018.01.017]
 LI Weiguang,ZHANG Zhankuan*.Effect of surface micro-texture cemented carbide on friction characteristics of birch[J].Journal of Forestry Engineering,2018,3(01):103.[doi:10.13360/j.issn.2096-1359.2018.01.017]

备注/Memo

备注/Memo:
收稿日期:2019-03-24 修回日期:2019-07-30
基金项目:中央级公益性科研院所基本科研业务费专项资金(CAFYBB2018SZ015)。
作者简介:李伟光,男,助理研究员,研究方向为木材切削原理与刀具。通信作者:张占宽,男,研究员。E-mail:zhangzk@criwi.org.cn
更新日期/Last Update: 2019-12-10