[1]于培静,张伟,陈敏智,等.等离子体改性热塑性树脂薄膜制备环保胶合板试验[J].林业工程学报,2020,5(01):41-47.[doi:10.13360/j.issn.2096-1359.201903031]
 YU Peijing,ZHANG Wei,CHEN Minzhi,et al.Plasma-treated thermoplastic resin film as adhesive for preparing environmentally-friendly plywood[J].Journal of Forestry Engineering,2020,5(01):41-47.[doi:10.13360/j.issn.2096-1359.201903031]
点击复制

等离子体改性热塑性树脂薄膜制备环保胶合板试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
41-47
栏目:
木材科学与技术
出版日期:
2020-01-07

文章信息/Info

Title:
Plasma-treated thermoplastic resin film as adhesive for preparing environmentally-friendly plywood
文章编号:
2096-1359(2020)01-0041-07
作者:
于培静张伟陈敏智周晓燕*
南京林业大学材料科学与工程学院,南京 210037
Author(s):
YU Peijing ZHANG Wei CHEN Minzhi ZHOU Xiaoyan*
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
等离子体处理 热塑性树脂 相容性 环保胶合板 胶合界面
Keywords:
plasma treatment thermoplastic resin compatibility environment-friendly plywood bonding interface
分类号:
TS653.3
DOI:
10.13360/j.issn.2096-1359.201903031
文献标志码:
A
摘要:
为获得无甲醛释放的环保胶合板,将热塑性树脂薄膜(低密度聚乙烯(LLDPE)、聚丙烯(PP)、聚氯乙烯(PVC))用作胶黏剂,并利用空气介质阻挡等离子体对热塑性树脂薄膜进行表面改性处理以提高薄膜与杨木单板的界面相容性,从而获得性能良好的环保胶合板。研究了等离子体处理对胶合板胶合性能的影响,并从等离子体处理对热塑性树脂薄膜表面化学组分及其对胶合板界面形貌的影响分析其胶合机理。结果表明:在等离子体处理功率为4.5 kW、处理时间为8 m/min的条件下处理热塑性树脂薄膜,胶合板的胶合强度得到显著提高,LLDPE /杨木胶合板的胶合强度从0.49 MPa增至0.81 MPa,PP/杨木胶合板的胶合强度从0.65 MPa提高到0.84 MPa,均达到Ⅱ类胶合板标准要求。其中用等离子体处理后PVC与杨木制备的胶合板能满足Ⅰ类胶合板的标准要求,胶合强度达到0.79 MPa。XPS分析表明,等离子体改性热塑性树脂薄膜的表面发生了氧化反应,引入了含氧官能团,提高了薄膜表面极性,有利于提高薄膜与杨木单板之间的相互作用,从而使得胶合板的界面胶合更为紧密,说明等离子体处理后树脂与杨木单板的相容性提高,树脂能在单板表面更好地附着。热塑性树脂薄膜与杨木单板制备的胶合板仅有极微量甲醛释放,其主要源于木材自身,远低于国家标准对人造板甲醛释放限量的要求。研究证明等离子体处理能明显改善热塑性树脂薄膜与杨木单板的界面相容性。
Abstract:
Since plywood is the main material in indoor decoration, its environmental protection, especially the emission of formaldehyde, has become the focus of people's attention. To solve the problem of formaldehyde release in wood-based panels, the thermoplastic resins have received more and more attention due to its excellent performance and free formaldehyde emission. In this study, thermoplastic resins(low density linear polyethylene, polypropylene and polyvinyl chloride)were used as adhesive to produce plywood for indoor applications. To overcome the nonpolar surface of thermoplastic resin and improve the interfacial bonding between resin and wood, the dielectric barrier discharge(DBD)plasma was applied to promote polarity of film and improve the bonding strength between the wood and resin adhesive. The process of the DBD treatment did not need additional chemical substances and produce any harmful substances, and it only affected the surface of the material. The whole process was efficient and environmentally friendly. The DBD plasma was used to treat resin to improve the interface compatibility between resin and poplar veneer in this study. The effect of plasma treatment on the bonding properties of plywood was studied, and the chemical composition of thermoplastic resins and the interface structure of plywood were characterized by the X-ray photoelectron spectroscopy(XPS)and scanning electronic microscopy(SEM), respectively. The obtained results showed that the resin surface was evidently oxidized and multiple oxygen-containing functional groups were grafted on the thermoplastic resin surface after the plasma treatment of 4.5 kW and 8 m/min, which was beneficial to the adhesion of resins on the wood surface. After the plasma treatment, the bonding strength of the LLDPE plywood increased from 0.49 MPa to 0.81 MPa and the bonding strength of PP plywood increased to 0.84 MPa, which met the bonding performance requirements of type II plywood, even the PVC plywood could meet the standard requirements ofⅠplywood(up to 0.79 MPa). The formaldehyde emission of plywood was far lower than the national standard value, and the formaldehyde mainly came from the wood. It could be concluded that the DBD plasma treatment could improve the bonding strength between wood and thermoplastic resin adhesives and the plasma-treated thermoplastic resins could be used as wood adhesives to produce environment-friendly plywood.

参考文献/References:

[1] 陈敏智, 陈燕, THIPHUONG N, 等. 常压等离子体处理对单板表面特性及豆胶胶合的影响[J]. 林业工程学报, 2017, 2(5): 9-14. DOI:10.13360/j.issn.2096-1359.2017.05.002.
CHEN M Z, CHEN Y, THIPHUONG N, et al. Effects of atmospheric plasma treatment on surface characteristics of veneer and bean gum bonding[J]. Journal of Forestry Engineering, 2017, 2(5): 9-14.
[2] 李雪菲, 任从容, 韦文榜, 等. 桉木单板/聚丙烯膜复合材料的制备工艺及力学性能[J]. 东北林业大学学报, 2015, 43(2): 87-90. DOI:10.13759/j.cnki.dlxb.2015.02.003.
LI X F, REN C R, WEI W B, et al. Preparation technology and mechanical properties of eucalyptus veneer/polypropylene film composites[J]. Journal of Northeast Forestry University, 2015, 43(2): 87-90.
[3] KADIYALA A K, BIJWE J. Investigations on performance and failure mechanisms of high temperature thermoplastic polymers as adhesives[J]. International Journal of Adhesion and Adhesives, 2016, 70: 90-101. DOI:10.1016/j.ijadhadh.2016.05.011.
[4] TANG L, ZHANG Z G, ZHAO J R. A new formaldehyde-free adhesive for plywood made by in-situ chlorinating grafting of MAH onto HDPE[J]. European Journal of Wood & Wood Products, 2012, 70(1/2/3): 377-379. DOI:10.1007/s00107-011-0525-3.
[5] 方露, 王雪花, 熊先青, 等. 单板表面预处理对木塑复合胶合板耐湿循环能力的影响[J]. 林业工程学报, 2016, 1(1): 37-41. DOI:10.13360/j.issn.2096-1359.2016.01.007.
FANG L, WANG X H, XIONG X Q, et al. Effect of veneer surface pretreatment on wet-cycle resistance of wood-plastic composite plywood[J]. Journal of Forestry Engineering, 2016, 1(1): 37-41.
[6] PENG Y, LIU R, CAO J. Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering[J]. Applied Surface Science, 2015, 332: 253-259. DOI:10.1016/j.apsusc.2015.01.147.
[7] 方露, 常亮, 郭文静, 等. 高温处理对木塑复合胶合板性能的影响[J]. 木材工业, 2014, 28(4): 5-8. DOI:10.3969/j.issn.1001-8654.2014.04.001.
FANG L, CHANG L, GUO W J, et al. Effects of high temperature treatment on properties of wood-plastic composite plywood[J]. China Wood Industry, 2014, 28(4): 5-8.
[8] 黄丽婕, 周雷, 王晓彤, 等. 木塑复合材料界面相容性的研究进展[J]. 塑料工业, 2016, 44(2): 8-12. DOI:10.3969/j.issn.1005-5770.2016.02.003.
HUANG L J, ZHOU L, WANG X T, et al. Research progress on interfacial compatibility of wood-plastic composites[J]. Plastics Industry, 2016, 44(2): 8-12.
[9] XIE Y, HILL C A S, XIAO Z, et al. Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A, 2010, 41(7): 806-819. DOI:10.1016/j.compositesa.2010.03.005.
[10] FOMBUENA V, GARCIA S D, SANCHEZ N L, et al. Optimization of atmospheric plasma treatment of LDPE films: influence on adhesive properties and ageing behavior[J]. Journal of Adhesion Science and Technology, 2013, 28(1): 97-113. DOI:10.1080/01694243.2013.847045.
[11] GONZALEZ E, BARANKIN M D, GUSCHL P C, et al. Ring opening of aromatic polymers by remote atmospheric-pressure plasma[J]. IEEE Transactions on Plasma Science, 2009, 37(6): 823-831. DOI:10.1109/tps.2009.2014769.
[12] PANDIYARAJ K N, SELVARAJAN V, DESHMUKH R R, et al. Modification of surface properties of polypropylene(PP)film using DC glow discharge air plasma[J]. Applied Surface Science, 2009, 255(7): 3965-3971. DOI:10.1016/j.apsusc.2008.10.090.
[13] TING L I. Mechanism and kinetic analysis of NO/SO2/N2/O2 non-thermal plasma dissociation reaction process[J]. Journal of Engineering Thermophysics, 2007, 28(3): 531-533. DOI:10.1088/1009-0630/10/6/11.
[14] KLARHOFER L, VIOL W, MAUSFRIEDRICHS W. Electron spectroscopy on plasma treated lignin and cellulose[J]. Holzforschung, 2010, 64(3): 331-336. DOI:10.1515/hf.2010.048.
[15] LI C, LI H L, LI C H, et al. Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries[J]. Japanese Journal of Applied Physics, 2017, 57(1S): 01AB03. DOI:10.7567/JJAP.57.01AB03.
[16] PANDIYARAJ K N, DESHMUKH R R, RUZYBAYEV I, et al. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene(LDPE)[J]. Applied Surface Science, 2014, 307(1): 109-119. DOI:10.1016/j.apsusc.2014.03.177.
[17] KOSTOV K G, NISHIME T M C, CASTRO A H R, et al. Surface modification of polymeric materials by cold atmospheric plasma jet[J]. Applied Surface Science, 2014, 314(10): 367-375. DOI:10.1016/ j.apsusc.2014.07.009.
[18] GILLIAM M, FARHAT S, ZAND A, et al. Atmospheric plasma surface modification of PMMA and PP micro-particles[J]. Plasma Processes and Polymers, 2014, 11(11): 1037-1043. DOI:10.1002/ ppap.201300087.
[19] CUI N Y, NMD B. Modification of the surface properties of a polypropylene(PP)film using an air dielectric barrier discharge plasma[J]. Applied Surface Science, 2002, 189(1/2): 31-38. DOI:10.1016/s0169-4332(01)01035-2.
[20] 李明, 汪进秋. 增塑剂在PVC材料中损失问题的研究进展[J]. 聚氯乙烯, 2018, 46(9): 3-7. DOI:CNKI:SUN:JLYA.0.2018-09-002.
LI M, WANG J Q. Research progress on the loss of plasticizer in PVC materials[J]. Polyvinyl Chloride, 2018, 46(9): 3-7.
[21] CHEN J R, YAN J L, ZHANG Y Z. Surface modification of medical PVC by remote oxygen plasma[J]. Composite Interfaces, 2004, 11(2): 123-130. DOI:10.1163/156855404322971396.
[22] 郑学刚, 唐黎华, 倪燕慧, 等. PVC材料热解脱氯的研究[J]. 华东理工大学学报, 2003, 29(6): 547-550. DOI:10.3969/j.issn.1006-3080.2003.06.002.
ZHENG X G, TANG L H, NI Y H, et al. Study on thermal-liberated chlorine in PVC materials[J]. Journal of East China University of Science and Technology, 2003, 29(6): 547-550.
[23] RU L, JIE R C. Studies on wettability of medical poly(vinyl chloride)by remote argon plasma[J]. Applied Surface Science, 2006, 252(14): 5076-5082. DOI:10.1016/j.apsusc.2005.07.045.

相似文献/References:

[1]尹婷婷,卢晓宁*,韩振华.改性玻璃纤维布增强落叶松复合材料的胶合性能[J].林业工程学报,2016,1(04):45.[doi:10.13360/j.issn.2096-1359.2016.04.007]
 YIN Tingting,LU Xiaoning*,HAN Zhenhua.Characterization of bonding interface of modified glass-fiber/larch composites[J].Journal of Forestry Engineering,2016,1(01):45.[doi:10.13360/j.issn.2096-1359.2016.04.007]
[2]刘晓辉.热塑性树脂胶合板板坯热压过程中影响温度变化的主要因素[J].林业工程学报,2018,3(02):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]
 LIU Xiaohui.The main factors affecting temperature change of mat during the manufacturing process of thermoplastic resin plywood[J].Journal of Forestry Engineering,2018,3(01):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]

备注/Memo

备注/Memo:
收稿日期:2019-03-25 修回日期:2019-06-05
基金项目:国家自然科学基金(31870549); 江苏省“333工程”资助项目(BRA2016381)。
作者简介:于培静,女,研究方向为人造板与胶黏剂。通信作者:周晓燕,女,教授。E-mail: zhouxiaoyan@njfu.edu.cn
更新日期/Last Update: 2019-12-10