[1]张镭,张爱红,王伟宏*.单板饰面黄麻毡/PF复合材料的性能研究[J].林业工程学报,2020,5(01):48-52.[doi:10.13360/j.issn.2096-1359.201904014]
 ZHANG Lei,ZHANG Aihong,WANG Weihong*.Study on the properties of veneer-laminated jute fiber/PF composites[J].Journal of Forestry Engineering,2020,5(01):48-52.[doi:10.13360/j.issn.2096-1359.201904014]
点击复制

单板饰面黄麻毡/PF复合材料的性能研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
48-52
栏目:
木材科学与技术
出版日期:
2020-01-07

文章信息/Info

Title:
Study on the properties of veneer-laminated jute fiber/PF composites
文章编号:
2096-1359(2020)01-0048-05
作者:
张镭张爱红王伟宏*
生物质材料科学与技术教育部重点实验室东北林业大学,哈尔滨 150040
Author(s):
ZHANG Lei ZHANG Aihong WANG Weihong*
Key Laboratory of Bio-based Material Science and TechnologyNortheast Forestry University, Ministry of Education, Harbin 150040, China
关键词:
黄麻毡 酚醛树脂 单板饰面 复合材料 力学性能
Keywords:
jute felt phenol formaldehyde resin veneer finish composite mechanical property
分类号:
S784; TB332
DOI:
10.13360/j.issn.2096-1359.201904014
文献标志码:
A
摘要:
使用酚醛树脂(PF)浸渍黄麻毡,再通过热压方式制备成复合材料,在热压的同时将单板覆盖到黄麻毡/PF复合材料表面。对制备的复合材料进行了弯曲性能、冲击性能和表面胶合强度测试。结果表明,随着麻纤维含量的提高(与树脂质量比为1:9,2:8,3:7,4:6),复合材料的弯曲性能和冲击性能也随之提高。纤维与树脂质量比为4:6的黄麻毡/PF复合材料弯曲、冲击性能最好。与未饰面材料相比,经单板饰面后的复合材料弯曲和冲击性能得到大幅度提高(纤维与树脂质量比为4:6的饰面黄麻毡/PF复合材料的弯曲模量为8 GPa,弯曲强度为70 MPa,冲击韧性为8.9 kJ/m2)。饰面黄麻毡/PF复合材料的表面胶合强度随纤维含量的增加而下降,但都大于0.6 MPa,满足国家标准的要求。浸渍剥离长度均小于25 mm,也达到国家标准要求。通过扫描电子显微镜观察发现,树脂未完全进入麻纤维细胞腔,这有利于提高复合材料的冲击性能,同时降低材料密度; 树脂填充于纤维束之间,结合紧密。利用来源充足、价格低廉的黄麻毡可以制备出性能良好的复合材料,经单板贴面不仅提高了复合材料的力学性能,而且能够起到装饰作用,研究结果为生物质纤维的利用提供了新途径。
Abstract:
In the present study, unwoven jute preform was impregnated with phenol formaldehyde(PF)resin and then prepared a composites by hot-pressing method. The veneer was laminated on the surface of the jute fiber/PF composites along with the hot-pressing. The test results showed that the mechanical properties of the jute fiber/PF composites increased with the increase of jute fiber content(10%, 20%, 30% and 40%), and the best performance presented at 40% of the jute fiber. When the jute fiber/PF composite was covered with wood veneer, its mechanical strengths were greatly improved(flexural modulus of 8 GPa, flexural strength of 70 MPa and impact toughness of 8.9 kJ/m2). The surface bonding strength of the veneered jute fiber/PF composite decreased with the increase of jute fiber content, and the surface bonding strength of all groups were greater than 0.6 MPa, meeting the requirement of the national standard of China. The length of the immersion peeling test was less than 25 mm, which also meet the requirement of the national standard. As the resin content decreased, the peeling length of the resin layer increased. This indicated that the water resistance of the veneer was closely related to the resin content in the substrate, as the high resin content in the substrate provided a sufficiently thick adhesive layer for the bonded veneer. The observation of the scanning electronic microscope showed that the more fibers, the more pores in the unfilled cell cavities, the better the impact performance was obtained. The bonding interface between the resin and the fiber did not create voids, which ensured that the bonding interface effectively transferred the load, thereby increased the impact strength of the composite. There was a crack between the veneer and the jute fiber/PF composite substrate, and the interface between the surface layer and the substrate was not as good as the veneer when the resin content was high, which helped absorb the impact energy, but provided a channel for deep penetration of moisture, thus reducing the surface bond strength. The resin was not completely filled in fiber cell lumen, which benefited the impact properties and reduced the density of jute fiber/PF composite. Jute fiber is an abundant natural resource with low cost, and can be used to produce the composite with good performance. When jute fiber/PF composite was covered with wood veneer, the one-step veneer molding enabled partial PF resin to penetrate into the veneer, therefore its mechanical properties were significantly improved and the appearance of the panel could be beautified.

参考文献/References:

[1] 张璐, 黄故. 亚麻增强热塑性树脂复合材料板材的研究与应用[J]. 工程塑料应用, 2009, 37(6): 40-43. DOI:10.3969/j.issn.1001-3539.2009.06.012.
ZHANG L, HUANG G. Research on flax fiber reinforced thermoplastic composite[J]. Engineering Plastics Application, 2009, 37(6): 40-43.
[2] 田永, 何莉萍, 王璐琳, 等. 汽车制造用苎麻纤维增强聚丙烯的力学性能研究[J]. 材料工程, 2008, 36(1): 21-24.
TIAN Y, HE L P, WANG L L, et al. Study of mechanical properties of ramie fiber reinforced polypropylene compounds for automobile industry[J]. Journal of Materials Engineering, 2008, 36(1): 21-24.
[3] 周双, 杨雨, 田雅娟. 黄麻纤维的碱处理对淀粉/LDPE/黄麻纤维复合材料性能的影响[J]. 辽宁化工, 2013, 42(7): 751-753.
ZHOU S, YANG Y, TIAN Y J. Effect of the pretreatment of jute fiber with sodium hydroxide on properties of starch/LDPE/jute fiber composite[J]. Liaoning Chemical Industry, 2013, 42(7): 751-753.
[4] 王国杰, 孙宇, 曹春平, 等. 黄麻纤维增强聚氨酯复合材料的拉伸性能研究[J]. 塑料工业, 2012, 40(8): 81-84.
WANG G J, SUN Y, CAO C P, et al. Research on tensile performance of jute fiber reinforced composites[J]. China Plastics Industry, 2012, 40(8): 81-84.
[5] 张安定, 马胜, 丁辛, 等. 黄麻纤维增强聚丙烯的力学性能[J]. 玻璃钢/复合材料, 2004(2): 3-5. DOI:10.3969/j.issn.1003-0999.2004.02.001.
ZHANG A D, MA S, DING X, et al. Mechanical behaviors of jute fiber reinforced polypropylene composite[J]. Fiber Reinforced Plastics/Composites, 2004(2): 3-5.
[6] 张爱红, 魏强, 王伟宏. 陈放温度对黄麻纤维/酚醛树脂复合材料力学性能的影响[J]. 林业工程学报, 2018, 3(4): 112-117. DOI:10.13360/j.issn.2096-1359.2018.04.019.
ZHANG A H, WEI Q, WANG W H. Effect of drying temperature on mechanical properties of jute fiber/phenol-formaldehyde resin composite[J]. Journal of Forestry Engineering, 2018, 3(4): 112-117.
[7] 李和平. 木材胶黏剂[M]. 北京: 化学工业出版社, 2009.
LI H P. Wood adhesive[M]. Beijing: Chemical Industry Press, 2009.
[8] 黄发荣, 焦杨声. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003.
HUANG F R, JIAO Y S. Phenolic resin and its application[M]. Beijing: Chemical Industry Press, 2003.
[9] 吴文迪, 李明哲, 张鼎武, 等. 剑麻纤维/聚乳酸复合材料的制备及性能研究[J]. 塑料工业, 2016, 44(10): 18-21. DOI:10.3969/j.issn.1005-5770.2016.10.005.
WU W D, LI M Z, ZHANG D W, et al. Preparation and properties of sisal fiber/poly(lactic acid)composites[J]. China Plastics Industry, 2016, 44(10): 18-21.
[10] 王逢瑚, 马立军, 李永峰, 等. 强化杨木单板混合树脂液的配比[J]. 东北林业大学学报, 2005, 33(6): 45-46. DOI:10.13759/j.cnki.dlxb.2005.06.015..
WANG F H, MA L J, LI Y F, et al. Proportioning of mixed resin liquids used in producing strengthened poplar veneer[J]. Journal of Northeast Forestry University, 2005, 33(6): 45-46.
[11] 王志强, 王转转, 赵丹, 等. 胶液含量对单板条层积材柱构件性能的影响[J]. 林业工程学报, 2016, 1(6): 34-38. DOI:10.13360/j.issn.2096-1359.2016.06.006.
WANG Z Q, WANG Z Z, ZHAO D, et al. Effects of resin content on properties of parallel strand lumber columns[J]. Journal of Forestry Engineering, 2016, 1(6): 34-38.
[12] 吕九芳, 鹿甫坤, 刘欢欢, 等. 杨木粉塑化工艺及塑化产物理化性能[J]. 林业科技开发, 2015, 29(5): 102-106. DOI:10.13360/j.issn.1000-8101.2015.05.026.
LYU J F, LU F K, LIU H H, et al. Poplar powder plasticization process and physical and chemical properties of plasticized product[J]. China Forestry Science and Technology, 2015, 29(5): 102-106.
[13] 李永峰, 刘一星, 于海鹏, 等. 甲基丙烯酸缩水甘油酯改善木塑复合材料性能[J]. 复合材料学报, 2009, 26(5): 1-7. DOI:10.13801/j.cnki.fhclxb.2009.05.028.
LI Y F, LIU Y X, YU H P, et al. Property improvement of wood polymer composites with glycidyl methacrylate[J]. Acta Materiae Compositae Sinica, 2009, 26(5): 1-7.
[14] 张敏, 朱波, 王启芬, 等. 单向碳纤维复合材料微观形貌与性能相关性研究[J]. 纤维复合材料, 2007, 24(2): 21-24.
ZHANG M, ZHU B, WANG Q F, et al. Study on relations between microstructure and property of unidirectional carbon fiber reinforced composites[J]. Fiber Composites, 2007, 24(2): 21-24.
[15] 马红霞, 任海青, 赵荣军. 木材表面胶粘剂渗透性能研究进展[J]. 世界林业研究, 2008, 21(6): 57-60. DOI:10.13348/j.cnki.sjlyyj.2008.06.003.
MA H X, REN H Q, ZHAO R J. Advances in the research on adhesive penetration on woody materials[J]. World Forestry Research, 2008, 21(6): 57-60.

相似文献/References:

[1]颉盼盼,连海兰*,孙香.氯化胆碱/丙三醇低共熔离子液改性 木质素酚醛树脂[J].林业工程学报,2016,1(04):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
 XIE Panpan,LIAN Hailan*,SUN Xiang.Modification of lignin-phenol-formaldehyde adhesive with ChCl/Glycerol deep-eutectic solvent[J].Journal of Forestry Engineering,2016,1(01):107.[doi:10.13360/j.issn.2096-1359.2016.04.018]
[2]崔勇,常建民,王文亮.玻璃纤维增强塑料用热解油-酚醛树脂的合成工艺[J].林业工程学报,2017,2(06):67.[doi:10.13360/j.issn.2096-1359.2017.06.012]
 CUI Yong,CHANG Jianmin,WANG Wenliang.Synthesis process of bio-oil phenolic resin used for glass-fiber reinforced plastic[J].Journal of Forestry Engineering,2017,2(01):67.[doi:10.13360/j.issn.2096-1359.2017.06.012]
[3]唐启恒,方露,郭文静*.聚磷酸铵对竹/聚丙烯纤维复合毡增强酚醛树脂基复合材料性能的影响[J].林业工程学报,2018,3(02):77.[doi:10.13360/j.issn.2096-1359.2018.02.013]
 TANG Qiheng,FANG Lu,GUO Wenjing*.Effects of ammonium polyphosphat on properties of bamboo/polypropylene mats reinforced phenolic resin composites[J].Journal of Forestry Engineering,2018,3(01):77.[doi:10.13360/j.issn.2096-1359.2018.02.013]
[4]张爱红,魏强,王伟宏*.陈放温度对黄麻纤维/酚醛树脂复合材料力学性能的影响[J].林业工程学报,2018,3(04):112.[doi:10.13360/j.issn.2096-1359.2018.04.019]
 ZHANG Aihong,WEI Qiang,WANG Weihong*.Effect of drying temperature on mechanical properties of jute fiber/phenol-formaldehyde resin composite[J].Journal of Forestry Engineering,2018,3(01):112.[doi:10.13360/j.issn.2096-1359.2018.04.019]
[5]东婉茹,许民*.纳米铜-锌防腐剂联合酚醛树脂对橡胶木性能的影响[J].林业工程学报,2019,4(01):39.[doi:10.13360/j.issn.2096-1359.2019.01.006]
 DONG Wanru,XU Min*.Effect of nano copper-zinc preservative combined with phenolic resin on properties of rubber wood[J].Journal of Forestry Engineering,2019,4(01):39.[doi:10.13360/j.issn.2096-1359.2019.01.006]
[6]周方浪,杨静,杨海艳,等.KOH原位活化对木质素基泡沫炭的结构性能调控[J].林业工程学报,2019,4(02):99.[doi:10.13360/j.issn.2096-1359.2019.02.016]
 ZHOU Fanglang,YANG Jing,YANG Haiyan,et al.The in situ regulation of structural properties of lignin-based carbon foam by KOH[J].Journal of Forestry Engineering,2019,4(01):99.[doi:10.13360/j.issn.2096-1359.2019.02.016]
[7]陶鑫,吴燕,徐伟*,等.石墨烯/酚醛树脂浸渍改性地采暖地板的制备与表征[J].林业工程学报,2019,4(05):167.[doi:10.13360/j.issn.2096-1359.2019.05.024]
 TAO Xin,WU Yan,XU Wei*,et al.Preparation and characterization of heating floor impregnated by graphene/phenol-formaldehyde resin[J].Journal of Forestry Engineering,2019,4(01):167.[doi:10.13360/j.issn.2096-1359.2019.05.024]

备注/Memo

备注/Memo:
收稿日期:2019-04-07 修回日期:2019-06-14
基金项目:中央高校基本科研业务费(2572017ET05)。
作者简介:张镭,男,研究方向为生物质复合材料。通信作者:王伟宏,女,教授。E-mail:weihongwang2001@nefu.edu.cn
更新日期/Last Update: 2019-12-10