[1]李威,高颖,孟鑫淼*,等.角钢-集成材L形组合柱的受压性能研究[J].林业工程学报,2020,5(01):53-60.[doi:10.13360/j.issn.2096-1359.201903025]
 LI Wei,GAO Ying,MENG Xinmiao*,et al.Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J].Journal of Forestry Engineering,2020,5(01):53-60.[doi:10.13360/j.issn.2096-1359.201903025]
点击复制

角钢-集成材L形组合柱的受压性能研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
53-60
栏目:
木材科学与技术
出版日期:
2020-01-07

文章信息/Info

Title:
Study on compressive performance of angel steel-glued laminated timber L-shaped composite column
文章编号:
2096-1359(2020)01-0053-08
作者:
李威1高颖1孟鑫淼2*胡祺斌1邱雅琴1
1.北京林业大学材料科学与技术学院,木材科学与工程北京市重点实验室,木质材料科学与应用教育部重点实验室,北京 100083; 2.北京林业大学土木工程系,北京 100083
Author(s):
LI Wei1 GAO Ying1 MENG Xinmiao2* HU Qibin1 QIU Yaqin1
1. College of Material Science and Technology in Beijing Forestry University, Beijing Key Laboratory of wood Science and Engineering, MOE Key Laboratory of wooden Material Science and Application, Beijing 100083, China; 2. Department of Civil Engineering, Beijing Forestry University, Beijing 100083, China
关键词:
钢木组合结构 集成材 异形柱 受压性能 有限元分析
Keywords:
steel-wood composite structure glued laminated timber special-shaped column compressive performance finite element analysis
分类号:
TU366.2
DOI:
10.13360/j.issn.2096-1359.201903025
文献标志码:
A
摘要:
为提高装配式木结构中异形柱的力学性能,设计了一种用热压等边角钢和SPF集成材为原料,环氧树脂胶黏剂连接制作的角钢-集成材L形组合柱,作为框架结构或框架剪力墙结构的角柱。以角钢边宽度对L形柱正截面承载力的影响进行了轴压试验研究,并进行ANSYS有限元模拟,以判断模拟预测的准确性。结果表明:角钢-集成材L形组合柱相对于同截面面积的木柱而言承载能力上升37.0%~51.4%,刚度上升36.5%~72.8%,同时L形柱有良好的延性; 适当增加L形柱中的角钢边宽度可以使承载能力有效提高,但是其短边处的集成材易产生破裂,增加试件的脆性破坏; 集成材之间的环氧树脂胶合界面在破坏前后都性能良好,在材料弹性阶段钢材和木材有效共同受力,承载力计算时需要考虑钢材的塑形增强作用; ANSYS有限元模拟的角钢-集成材L形组合柱弹性模量结果和试验结果一致,误差在10%以内,模拟结果基本可靠。研究成果对于预测角钢-集成材L形组合柱在实际预制装配时的安全可靠性提供了理论依据。
Abstract:
In order to improve the mechanical properties of the special-shaped columns of fabricated wooden structures, this study designed an angle-steel-glued L-shaped composite column made of hot-pressed equiangular steel and spruce, pine and fir(SPF)dimension lumber-laminated material and epoxy resin adhesive, which can be used as the corner column of frame structure or frame shear wall structure. The bearing test and analysis of the influence of the width of the angle steel on the normal section bearing capacity of the special-shaped column were carried out, and the finite element simulation was conducted using ANSYS software to verify the accuracy of the simulation prediction. The results showed that the steel-wood L-shaped composite column had a load-carrying capacity increase of 37.0%-51.4% and a stiffness increase of 36.5%-72.8% with respect to the wood column. At the same time, the L-shaped column had good ductility. The width of the edge can effectively improve the load-carrying capacity, but the laminated material at the short side was prone to cracking and increased the brittleness. The interface bonded with the epoxy resin between the laminated materials always had good performance, and the steel in the material elastic stage effectively combined with wood. The shape enhancement of the steel should be considered in the calculation of the bearing capacity. The elastic modulus of the steel-wood L-shaped composite column simulated by ANSYS software was consistent with the test results, and the error was within 10%, which proved that the simulation results were relatively reliable. The research results can provide a theoretical basis for predicting the safety and reliability of the L-shaped steel-wood composite columns in the practical industrial prefabrication.

参考文献/References:

[1] 杨学兵. 我国现代木结构建筑发展趋势分析[J]. 建设科技, 2017(5): 12-15. DOI:10.16116/j.cnki.jskj.2017.05.001.
YANG X B. Analysis of the development trend of modern wood structure construction in China[J]. Construction Science and Technology, 2017(5): 12-15.
[2] 国务院办公厅. 国务院办公厅关于大力发展装配式建筑的指导意见[J]. 住宅产业, 2016(10): 10-12.
General Office of the State Council. Guiding opinions of the General Office of the State Council on vigorously developing prefabricated buildings[J]. Residential Industry, 2016(10): 10-12.
[3] 中华人民共和国住房和城乡建设部. “十三五”装配式建筑行动方案[Z]. 2017-03-23.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. “13th Five-Year” Prefabricated Building Action Plan[Z]. 2017-03-23.
[4] XU Y Y, WU B. Fire resistance of reinforced concrete columns with L-, T-, and +-shaped cross-sections[J]. Fire Safety Journal, 2009, 44(6): 869-880. DOI:10.1016/j.firesaf.2009.04.002.
[5] 叶倩. 异形柱和短肢剪力墙体系的结构设计[D]. 合肥:合肥工业大学, 2006.
YE Q. Structural design of systems with special-shaped columns and short leg shear wall[D]. Hefei: Hefei University of Technology, 2006.
[6] 程绍革, 陈善阳, 刘经伟. 高层建筑短肢剪力墙结构振动台试验研究[J]. 建筑科学, 2000, 16(1): 12-16. DOI:10.13614/j.cnki.11-1962/tu.2000.01.003
CHENG S G, CHEN S Y, LIU J W. A shaking table test on shear wall structure with framed short Pillars for high-rise buildings[J]. Building Science, 2000, 16(1): 12-16.
[7] 陈宗平, 张喜德, 苏益声, 等. 一种新型混凝土异形柱:型钢混凝土异形柱的概念体系初探[J]. 四川建筑科学研究, 2006, 32(2): 25-27.
CHEN Z P, ZHANG X D, SU Y S, et al. A new type of concrete special-shaped columns:study of steel reinforced concrete special-shaped columns concept system[J]. Sichuan Building Science, 2006, 32(2): 25-27.
[8] 李哲, 阙良刚, 徐凯, 等. L形和T形型钢异形截面柱轴心受压承载力的试验研究[J]. 西安理工大学学报, 2005, 21(2): 165-168. DOI:10.19322/j.cnki.issn.1006-4710.2005.02.013.
LI Z, QUE L G, XU K, et al. Testing study of axial pressure bearing capacity of T-shaped and L-shaped steel reinforced concrete columns[J]. Journal of Xi'an University of Technology, 2005, 21(2): 165-168.
[9] 宋怀金, 苏益声, 罗永峰. SRC不等肢L形截面异形柱正截面承载力研究[J]. 同济大学学报(自然科学版), 2007, 35(12): 1597-1601, 1621.
SONG H J, SU Y S, LUO Y F. Loading-bearing capacity of normal cross section of SRC L-shaped columns[J]. Journal of Tongji University(Natural Science), 2007, 35(12): 1597-1601, 1621.
[10] JANG S, KIM Y, SHIN I. Structural properties of steel-glulam composite column[J]. Journal of the Korean Wood Science and Technology, 2010, 38(5): 399-404. DOI:10.5658/wood.2010.38.5.399.
[11] 张峰. 钢—木屈曲约束支撑抗震性能研究[D]. 南京: 南京工业大学, 2015.
ZHANG F. Study on the seismic performance of steel-timber buckling restrained brace[D]. Nanjing: Nanjing University of Technology, 2015.
[12] 潘福婷, 王艳华, 吴京. 钢木组合柱的有限元分析及其设计[J]. 阴山学刊(自然科学版), 2016, 30(1): 26-29. DOI:10.13388/j.cnki.ysajs.20150910.002.
PAN F T, WANG Y H, WU J. Finite element analysis and theoretic design of steel-timber combined column[J]. Yinshan Academic Journal(Natural Science Edition), 2016, 30(1): 26-29.
[13] GHANBARI GHAZIJAHANI T, JIAO H, HOLLOWAY D. Rectangular steel tubes with timber infill and CFRP confinement under compression: experiments[J]. Journal of Constructional Steel Research, 2015, 114:196-203. DOI:10.1016/j.jcsr.2015.07.015.
[14] 王香云. 钢管加固木柱轴心受压性能试验研究[D]. 西安: 西安建筑科技大学, 2014.
WANG X Y. Experimental research on axial compressive behaviors of timber column strengthened with steeltube[D]. Xi'an: Xi'an University of Architecture and Technology, 2014.
[15] 孟颖. 钢—木组合柱抗侧力性能研究[D]. 北京: 北京建筑大学, 2017.
MENG Y. Research on the lateral force resistance of steel-wood composite column[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2017.

备注/Memo

备注/Memo:
收稿日期:2019-03-19 修回日期:2019-04-20
基金项目:国家重点研发计划(2017YFC0703503); 国家自然科学基金(31770602); 北京市支持中央在京高校共建项目(2015-共建); 北京林业大学科技创新计划项目(2017JC11); 中央高校基本科研业务费专项资金资助(BLX201706)。
作者简介:李威,男,研究方向为木质复合材料。通信作者:孟鑫淼,男,讲师。E-mail:mengxinmiao@bjfu.edu.cn
更新日期/Last Update: 2019-12-10