[1]陆丽晨,董梦琪,杨涛,等.光催化提高黑荆树单宁与甲醛反应能力研究[J].林业工程学报,2020,5(01):69-74.[doi:10.13360/j.issn.2096-1359.201903011]
 LU Lichen,DONG Mengqi,YANG Tao,et al.Improvement of reaction ability of mimosa tannin with formaldehyde by photocatalysis[J].Journal of Forestry Engineering,2020,5(01):69-74.[doi:10.13360/j.issn.2096-1359.201903011]
点击复制

光催化提高黑荆树单宁与甲醛反应能力研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
69-74
栏目:
林产化学加工
出版日期:
2020-01-07

文章信息/Info

Title:
Improvement of reaction ability of mimosa tannin with formaldehyde by photocatalysis
文章编号:
2096-1359(2020)01-0069-06
作者:
陆丽晨董梦琪杨涛顾钰韩书广*
南京林业大学材料科学与工程学院,南京 210037
Author(s):
LU Lichen DONG Mengqi YANG Tao GU Yu HAN Shuguang*
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
黑荆树单宁 光催化 降解 甲醛 纳米二氧化钛
Keywords:
mimosa tannin photocatalysis degradation formaldehyde nano titanium dioxide
分类号:
TQ943.2
DOI:
10.13360/j.issn.2096-1359.201903011
文献标志码:
A
摘要:
为提高黑荆树单宁与甲醛反应能力,以纳米TiO2为催化剂对黑荆树单宁进行紫外光催化降解。以降解物的甲醛结合量为指标,分析催化剂用量对黑荆树单宁降解产物甲醛反应能力的影响。采用基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)测定黑荆树单宁和具有最大甲醛结合量黑荆树单宁降解产物的分子量和聚合度。采用傅里叶转换红外光谱(FT-IR)对黑荆树单宁及具有最大甲醛结合量黑荆树单宁降解产物的官能团进行表征。结果表明,催化剂用量对降解物甲醛结合量的影响较大,当紫外光功率为400 W、溶液初始质量浓度为60 g/L、反应温度为(35±5)℃、纳米TiO2添加量为4%(质量分数,以黑荆树单宁质量计)、降解时间为10 h时,降解物的甲醛结合量达到最大值(1.13 g/g),超过了苯酚和间苯二酚的甲醛结合量(0.89 g/g和0.94 g/g),有替代苯酚和间苯二酚与甲醛反应制备木材用胶黏剂的潜能。MALDI-TOF MS分析表明,黑荆树单宁的聚合度和分子量均有明显地下降趋势,降解物分子量分布集中于低分子量部分。FT-IR分析表明,单宁结构中连接棓酰基的醚键、棓儿茶素的苯环骨架、芳醚键、单元间C—C连接键均被破坏。以上结果表明,可通过紫外光催化降解调控黑荆树单宁的化学组成并降低其聚合度和分子量,获得的降解物具有良好的甲醛反应能力。
Abstract:
In this paper, in order to improve the reaction ability of mimosa tannin with formaldehyde, mimosa tannin was degraded by photocatalysis. Nano titanium dioxide was selected as the photocatalyst to degrade the mimosa tannin. The degradation of mimosa tannin by photocatalysis was carried out under the ultraviolet light. The amount of combined formaldehyde of degradation products was chosen as the index. The effects of photocatalyst dosage on reaction ability of degradation products of mimosa tannin with formaldehyde were investigated. The mimosa tannin and degraded products of mimosa tannin with maximum amount of combined formaldehyde were characterized by the matrix-assisted laser desorption ionization time-of-flight mass spectrometry and Fourier transform infrared spectroscopy. The molecular weight and degree of polymerization of mimosa tannin and degradation products of mimosa tannin with maximum amount of combined formaldehyde were determined by the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The functional groups of mimosa tannin and degraded products of mimosa tannin with maximum amount of combined formaldehyde were characterized by the Fourier transform infrared spectroscopy. The results of the determination of amount of combined formaldehyde of mimosa tannin, degraded products of mimosa tannin with maximum amount of combined formaldehyde, phenol and resorcinol showed that the combined formaldehyde of degraded products was strongly influenced by the catalyst dosage. The optimal degradation condition of mimosa tannin was the UV power of 400 W, the initial concentration of 60 g/L, the reaction temperature of(35±5)℃, the catalyst dosage of 4%(w/w, measured by the weight of mimosa tannin), and the degradation time of 10 h. The maximum combined formaldehyde of degraded products was 1.13 g/g, which was higher than the combined formaldehyde of phenol and resorcinol(0.89 g/g and 0.94 g/g). The degraded products of mimosa tannin had the potential to react with formaldehyde instead of phenol and resorcinol to prepare wood adhesive. The MALDI-TOF MS analysis showed that the molecular wight and polymerization of mimosa tannin decreased obviously and the molecular weight of degraded products mainly distributed at low molecular weight. The FT-IR spectra comfirmed that the ether linkages of galloyl esters, the benzene ring skeleton of gallocatechin, aryl ether linkages and the C—C linkages of repeated units were broken. The results proved that it was feasible to control the chemical composition of mimosa tannin and reduce its molecular weight and polymerization by photocatalysis under the UV irradiation, and the degraded products had good reaction ability with formaldehyde.

参考文献/References:

[1] ZHAO L, LIU Y, XU Z, et al. State of research and trends in development of wood adhesives[J]. Forest Ecosystems, 2011, 13(4): 321-326. DOI:10.1007/s11632-013-0401-9.
[2] PIZZI A. Tannery row:the story of some natural and synthetic wood adhesives[J]. Wood Science and Technology, 2000, 34(4): 277-316. DOI:10.1007/s002260000052.
[3] 雷洪, 杜官本, PIZZI A. 单宁基木材胶黏剂的研究进展[J]. 林产工业, 2008, 35(6): 15-19. DOI:10.3969/j.issn.1001-5299.2008.06.003.
LEI H, DU G B, PIZZI A. Research progress of tannin-based wood adhesive[J]. China Forest Products Industry, 2008, 35(6): 15-19.
[4] JAHANSHAEI S, ASGHARI J, TABARSA T J P, et al. Eco-friendly tannin-phenol formaldehyde resin for producing wood composites[J]. Pigment and Resin Technology, 2012, 41(5): 296-301. DOI:10.1108/03699421211264857.
[5] SEPAHVAND S, DOOSTHOSSEINI K, PIRAYESH H, et al. Supplementation of natural tannins as an alternative to formaldehyde in urea and melamine formaldehyde resins used in MDF production[J]. Drvna Industrija, 2018, 69(3): 215-221. DOI:10.5552/drind.2018.1726.
[6] 兰平, 马泽宇, 叶柳青, 等. 微生物降解葡萄皮单宁研究[J]. 林业工程学报, 2017, 2(5): 58-63. DOI:10.13360/j.issn.2096-1359.2017.05.011.
LAN P, MA Z Y, YE L Q, et al. Microbial degradation of grape pomace tannins[J]. Journal of Forestry Engineering, 2017, 2(5): 58-63.
[7] LI S H, LIU S, COLMENARES J C, et al. A sustainable approach for lignin valorization by heterogeneous photocatalysis[J]. Green Chemistry, 2016, 18(3): 594-607. DOI:10.1039/c5gc02109j.
[8] GAYA U I, ABDULLAH A H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:a review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2008, 9(1): 1-12. DOI:10.1016/j.jphotochemrev.2007.12.003.
[9] SHANDILYA P, MITTAL D, SONI M, et al. Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection[J]. Journal of Cleaner Production, 2018, 203: 386-399. DOI:10.1016/j.jclepro.2018.08.271.
[10] GU H F, LI C M, XU Y J, et al. Structural features and antioxidant activity of tannin from persimmon pulp[J]. Food Research International, 2008, 41(2): 208-217. DOI:10.1016/j.foodres.2007.11.011.
[11] EGHTEDARNEJAD N, MANSOURI H R. Steps to make the natural adhesive of Acacia mimosa tannin resistant to boiling water using Tinnevelly senna for particleboard production[J]. European Journal of Wood and Wood Products, 2018, 76(6): 1753-1756. DOI:10.1007/s00107-018-1346-4.
[12] 王璇, 吴志刚, 雷洪, 等. 单宁基胶粘剂的研究[J]. 中国胶粘剂, 2017, 26(2): 35-38. DOI:10.13416/j.ca.2017.02.009.
WANG X, WU Z G, LEI H, et al. Study on tannin-based adhesives[J]. China Adhesives, 2017, 26(2): 35-38.
[13] YAZAKI Y, COLLINS P J. Wood adhesives based on tannin extracts from barks of some pine and spruce species[J]. Holz als Roh- und Werkstoff, 1994, 52(5): 307-310. DOI:10.1007/BF02621420.
[14] NAVARRETE P, PIZZI A, PASCH H, et al. MALDI-TOF and 13C NMR characterization of maritime pine industrial tannin[J]. Industrial Crops and Products, 2010, 32(2): 105-110. DOI:10.1016/j.indcrop.2010.03.010.
[15] OSMAN. Comparative thermodynamic study on the contribution of the autocondensation and copolymerization reactions for the tannins of the subspecies of Acacia nilotica[J]. Journal of Polymers and the Environment, 2013, 21(4): 1100-1108. DOI:10.1007/s10924-013-0611-1.
[16] TABASIDEH S, MALEKI A, SHAHMORADI B, et al. Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles[J]. Separation and Purification Technology, 2017, 189: 186-192. DOI:10.1016/j.seppur.2017.07.065.
[17] GENG A, MENG L, HAN J, et al. Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites[J]. Cellulose, 2018, 25(7): 1-12. DOI:10.1007/s10570-018-1851-y.
[18] AHMADI M, MOTLAGH H R, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186:55-63. DOI:10.1016/j.jenvman.2016.09.088.
[19] YE Y, FENG Y, BRUNING H, et al. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species[J]. Applied Catalysis B:Environmental, 2018, 220: 171-181. DOI:10.1016/j.apcatb.2017.08.040.
[20] HOONG Y B, PARIDAH M T, LUQMAN C A, et al. Fortification of sulfited tannin from the bark of Acacia mangium with phenol-formaldehyde for use as plywood adhesive[J]. Industrial Crops and Products, 2009, 30(3): 416-421. DOI:10.1016/j.indcrop.2009.07.012.
[21] 兰平. 葡萄渣凝缩单宁的提取及单宁基胶粘剂研制[D]. 南京: 南京林业大学, 2013.
LAN P. Condensed tannins extraction from grape pomace: characterization and utilization as tannin-based adhesives[D]. Nanjing: Nanjing Forestry University, 2013.
[22] BOTHA J J, FERREIRA D, ROUX D G. Condensed tannins:direct synthesis, structure, and absolute configuration of four biflavonoids from black wattle bark(‘mimosa')extract[J]. Journal of the Chemical Society Chemical Communications, 1978, 16: 700-702. DOI:10.1039/c39780000700.
[23] HUANG W, NIU H, XUE X, et al. Robinetinidol-(4β→8)-epigallocatechin 3-O-gallate, a galloyl dimer prorobinetinidin from Acacia mearnsii De Wild, effectively protects human neuroblastoma SH-SY5Y cells against acrolein-induced oxidative damage[J]. Journal of Alzheimers Disease Jad, 2010, 21(2): 493-505. DOI:10.3233/JAD-2010-090886.
[24] TENG B, JIAN X, GAO Y, et al. Comparison of polyflavonoids in bayberry tanning effluent and commercial bayberry tannin: prerequisite information for vegetable tanning effluent recycling[J]. Journal of Cleaner Production, 2016, 112: 972-979. DOI:10.1016/j.jclepro.2015.09.005.
[25] FOO L Y. Proanthocyanidins: Gross chemical structures by infrared spectra[J]. Phytochemistry, 1981, 20(6): 1397-1402. DOI:10.1016/0031-9422(81)80047-7.
[26] 崔晓霞, 张小丽, 唐焕威, 等. 落叶松树皮活性物质提取及红外光谱分析[J]. 光谱学与光谱分析, 2012, 32(7): 1810-1814. DOI:10.3964/j.issn.1000-0593(2012)07-1810-05.
CUI X X, ZHANG X L, TANG H W, et al. Extraction and IR spectra analysis of active substances from larch bark[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1810-1814.
[27] RICCI A, OLEJAR K J, PARPINELLO G P, et al. Application of fourier transform infrared(FTIR)spectroscopy in the characterization of tannins[J]. Applied Spectroscopy Reviews, 2015, 50(5): 407-442. DOI:10.1080/05704928.2014.1000461.

相似文献/References:

[1]李昭,刘玉*,朱晓冬.纳米复合浸渍处理对饰面人造板甲醛控释的影响[J].林业工程学报,2017,2(06):21.[doi:10.13360/j.issn.2096-1359.2017.06.004]
 LI Zhao,LIU Yu*,ZHU Xiaodong.Release control of formaldehyde emission from veneered panels modified with nanoparticles[J].Journal of Forestry Engineering,2017,2(01):21.[doi:10.13360/j.issn.2096-1359.2017.06.004]
[2]夏子华,赵璐洋,吴伟兵*,等.基于杂多酸的光催化生物质燃料电池性能[J].林业工程学报,2017,2(06):86.[doi:10.13360/j.issn.2096-1359.2017.06.015]
 XIA Zihua,ZHAO Luyang,WU Weibing*,et al.Performance of photocatalytic biomass fuel cells based on heteropolyacids[J].Journal of Forestry Engineering,2017,2(01):86.[doi:10.13360/j.issn.2096-1359.2017.06.015]
[3]玄路宁,刘志高,符韵林*.木材表面Fe3+掺杂TiO2/SiO2复合膜构建及其光催化性能[J].林业工程学报,2018,3(04):35.[doi:10.13360/j.issn.2096-1359.2018.04.006]
 XUAN Luning,LIU Zhigao,FU Yunlin*.Construction of Fe3+ doped TiO2/SiO2 composite film on wood surface and its photocatalytic activity[J].Journal of Forestry Engineering,2018,3(01):35.[doi:10.13360/j.issn.2096-1359.2018.04.006]

备注/Memo

备注/Memo:
收稿日期:2019-03-11 修回日期:2019-11-15
基金项目:国家自然科学基金(31470590)。
作者简介:陆丽晨,女,研究方向为人造板与胶黏剂。通信作者:韩书广,男,副教授。E-mail:hanshg@njfu.edu.cn
更新日期/Last Update: 2019-12-10