[1]小可,薛昊,程万里,等.黄麻纤维织物增强乙烯酯复合材料的制备与力学性能(英文)[J].林业工程学报,2020,5(01):88-96.[doi:10.13360/j.issn.2096-1359.201903008]
 DUVIOL T Tadondzo,XUE Hao,CHENG Wanli,et al.Preparation and mechanical properties of vinyl ester composites reinforced with jute woven fabric[J].Journal of Forestry Engineering,2020,5(01):88-96.[doi:10.13360/j.issn.2096-1359.201903008]
点击复制

黄麻纤维织物增强乙烯酯复合材料的制备与力学性能(英文)()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
88-96
栏目:
生物质能源与材料
出版日期:
2020-01-07

文章信息/Info

Title:
Preparation and mechanical properties of vinyl ester composites reinforced with jute woven fabric
文章编号:
2096-1359(2020)01-0088-09
作者:
小可1薛昊1程万里1韩广萍1*王戈2程海涛2
1.生物质材料科学与技术教育部重点实验室东北林业大学,哈尔滨 150040; 2.国际竹藤中心,北京 100102
Author(s):
DUVIOL T Tadondzo1 XUE Hao1 CHENG Wanli1 HAN Guangping1* WANG Ge2 CHENG Haitao2
1. Key Laboratory of Bio-based Material Science and TechnologyNortheast Forestry University, Ministry of Education,Harbin 150040, China; 2. International Bamboo and Rattan Center, Beijing 100102, China
关键词:
黄麻纤维 织物 乙烯酯树脂 模压 纱线角度 力学性能
Keywords:
jute fiber woven fabric vinyl ester resin mold pressing yarn angle mechanical property
分类号:
TB332
DOI:
10.13360/j.issn.2096-1359.201903008
文献标志码:
A
摘要:
织物增强聚合物(TRP)因其具有优异的机械性能而被广泛应用于汽车、建筑等领域。传统TRP材料通常以玻璃纤维、碳纤维作为增强体,由于成本高及不可降解等问题限制了发展和应用。本研究采用可生物降解的天然黄麻纤维为增强体,以乙烯酯为基体树脂,采用模压工艺制备双层黄麻织物增强乙烯酯树脂复合材料。考察经纱和纬纱的取向对复合材料密度、孔隙率及力学性能的影响。通过调整黄麻织物的纱线角度(0°,30°,45°,60°和90°),研究经纬纱角度对复合材料性能的影响,采用的模压成型工艺是80 ℃、7 MPa条件下压制2.5 h。为了考察模压温度的影响,将纱线角度为60°的试样在40 ℃的低温条件下(其余条件不变)压制成型。结果表明:与纯乙烯酯相比,黄麻纤维具有一定的增强作用,复合材料的弯曲强度和冲击强度分别提高24.77%和39.83%,拉伸性能降低30.52%。扫描电子显微镜结果显示,复合材料力学强度的提高与纱线间的孔隙分布有关。在研究范围内,经纬纱定向对复合材料的冲击强度影响比较显著。低温(40 ℃)条件下,制备的定向角为60°时的黄麻纤维增强乙烯基酯复合材料的各项力学性能达到最佳。
Abstract:
Textile reinforced polymers(TRP)are rapid developed due to their inestimable performances such as light weight and high mechanical properties. TRP has been used as an important raw material in automotive vehicles, buildings, and electronic devices. To be engineering products, it is desirable to have high-class mechanical properties. Thus, glass fibers and carbon fibers are used in the conventional TRP-reinforced composites, however, their high costs and nonbiodegradability limited the development and application of the composites. The objective of this work was to fabricate vinyl ester composites using naturally renewable and biodegradable jute woven fabrics as reinforcing material via mold pressing to increase the composite mechanical performances. The effects of yarn orientation on the density, void content, and mechanical properties of the composites were investigated. In order to study the effects of warp and weft yarn angle on the mechanical behaviors of the composites, one of the bilayers of the woven jute fabrics was arranged at five different angles, i.e. 90°, 60°, 45°, 30° and 0°, respectively. The mold pressing condition of the composites was set with a pressure of 7 MPa at 80 ℃ for 150 min. In order to examine the effect of pressing temperature on the composite, another composite of 30° was prepared at lower temperature condition with a pressure of 7 MPa at 40 ℃ for 150 min. The results showed that, compared with the control, the jute woven fabrics can enhance the mechanical properties of the composites. The flexural strength increased by about 24.77% and the impact strength also increased by up to 39.83% compared with the control. This was obtained due to the space created by the yarn width. The gap between the two warp yarns and the weft yarns of the fabrics was also contributed to the improved properties. The orientation of the fabric(warp and weft yarns)demonstrated its capacity to influence the impact strength of the composites significantly. It was found that the density and the void content of the composite had significant impact on the mechanical properties of the composite. The voids created by the warp and weft yarns could be a great indicator of the density of the composite and an important place for the resin to be stacked. Within the research scope, the condition of warp yarn angle at 60° and pressing temperature at 40 ℃ was the most suitable condition to fabricate woven jute fabric reinforced vinyl ester composites.

参考文献/References:

[1] BLEDZKI A K, GASSAN J. Composites reinforced with cellulose based fibres[J]. Progress in Polymer Science, 1999, 24(2): 221-274. DOI:10.1016/S0079-6700(98)00018-5.
[2] KHALIL H P S A,BHAT I U H,JAWAID M,et al.Bamboo fibre reinforced biocomposites:a review[J]. Materials & Design, 2012, 42: 353-368. DOI:10.1016/j.matdes.2012.06.015.
[3] WANG F, LU M, ZHOU S J, et al. Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers[J]. Molecules, 2019, 24(15): 2682-2695. DOI:10.3390/molecules24152682.
[4] HUANG J K, YOUNG W B. The mechanical,hygral,and interfacial strength of continuous bamboo fiber reinforced epoxy composites[J]. Composites Part B:Engineering, 2019, 166: 272-283. DOI:10.1016/j.compositesb.2018.12.013.
[5] DOAN T T L, BRODOWSKY H, MADER E. Jute fiber / epoxy composites:surface properties and interfacial adhesion[J]. Composites Science and Technology, 2012, 72(10): 1160-1166. DOI:10.1016/j.compscitech.2012.03.025.
[6] HOU M, YE L, MAI Y W. Advances in processing of continuous fibre reinforced composites with thermoplastic matrix[J]. Plastics, Rubber & Composites Processing and Applications, 1995, 23(5): 279-293.
[7] BULL D J, SCOTT A E, SPEARING S M, et al. The influence of toughening-particles in CFRPs on low velocity impact damage resistance performance[J]. Composites Part A: Applied Science and Manufacturing, 2014, 58: 47-55. DOI:10.1016/j.compositesa.2013.11.014.
[8] NASH N H, YOUNG T M, MCGRAIL P T,et al. Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites:a review[J]. Materials & Design, 2015, 85: 582-597. DOI:10.1016/j.matdes.2015.07.001.
[9] RAY D, SARKAR B K, RANA A K, et al. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32(1): 119-127. DOI:10.1016/s1359-835x(00)00101-9.
[10] RADHAKRISHNAN S,PETHRICK R A.Continuous UV cure monitoring and dielectric properties of photocross-linked epoxy-acrylate resins[J]. Journal of Applied Polymer Science,1994,51(5):863-871.DOI:10.1002/app.1994.070510509.
[11] CHAND N, FAHIM M. Tribology of natural fiber polymer composites[M]. Cambridge:Woodhead Publishing Limited, 2008: 45. DOI:10.1533/9781845695057.
[12] HOLBERY J, HOUSTON D. Natural-fiber-reinforced polymer composites in automotive applications[J]. JOM, 2006, 58(11): 80-86. DOI:10.1007/s11837-006-0234-2.
[13] FARUK O,BLEDZKI A K, FINK H P, et al. Biocomposites reinforced with natural fibers:2000-2010[J]. Progress in Polymer Science, 2012, 37(11): 1552-1596. DOI:10.1016/j.progpolymsci.2012.04.003.
[14] SATHISHKUMAR T P, NAVEEN J, SATHEESHKUMAR S. Hybrid fiber reinforced polymer composites-a review[J]. Journal of Reinforced Plastics and Composites, 2014, 33(5): 454-471. DOI:10.1177/0731684413516393.
[15] LEE S H, WANG S Q. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(1):80-91. DOI:10.1016/j.compositesa.2005.04.015.
[16] BODROS E, PILLIN I, MONTRELAY N, et al. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications[J]. Composites Science and Technology, 2007, 67(3/4): 462-470. DOI:10.1016/j.compscitech.2006.08.024.
[17] AYRANCI C, CAREY J. 2D braided composites: a review for stiffness critical applications[J]. Composite Structures, 2008, 85(1): 43-58. DOI:10.1016/j.compstruct.2007.10.004.
[18] KYOSEV. Braiding technology for textiles[M]. Cambridge: Woodhead Publishing Limited, 2015. DOI:10.1016/c2013-0-16172-7.
[19] BILISIK K, KARADUMAN N S, BILISIK N E. Fiber architectures for composite applications[M]//Textile Science and Clothing Technology. Singapore: Springer, 2016: 75-134. DOI:10.1007/978-981-10-0234-2_3.
[20] LOMOV S V. Non-crimp fabric composites:manufacturing,properties and applications[M]. Cambridge:Woodhead Publishing Limited, 2011. DOI:10.1533/9780857092533.
[21] SAPUAN S M, MALEQUE M A. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand[J]. Materials & Design, 2005, 26(1): 65-71. DOI:10.1016/j.matdes.2004.03.015.
[22] RAJESH M, PITCHAIMANI J. Mechanical properties of natural fiber braided yarn woven composite:comparison with conventional yarn woven composite[J]. Journal of Bionic Engineering, 2017, 14(1): 141-150. DOI:10.1016/s1672-6529(16)60385-2.
[23] CHARLEBOIS K M, BOUKHILI R, ZEBDI O, et al. Evaluation of the physical and mechanical properties of braided fabrics and their composites[J]. Journal of Reinforced Plastics and Composites, 2005, 24(14): 1539-1554. DOI:10.1177/0731684405050391.
[24] DE ASSIS F S, PEREIRA A C, FILHO F D C G, et al. Performance of jute non-woven mat reinforced polyester matrix composite in multilayered armor[J]. Journal of Materials Research and Technology, 2018, 7(4): 535-540. DOI:10.1016/j.jmrt.2018.05.026.
[25] STOCCHI A, LAUKE B,ANALÍA VÁZQUEZ,et al. A novel fiber treatment applied to woven jute fabric / vinyl ester laminates[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(5): 1337-1343. DOI:10.1016/j.compositesa.2006.10.010.
[26] JAWAID M, ABDUL KHALIL H P S, ABU BAKAR A. Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites[J]. Materials Science and Engineering: A, 2011, 528(15): 5190-5195. DOI:10.1016/j.msea.2011.03.047.
[27] CHEUNG B K O, CAREY J P. Micromechanics for braided composites[M]//CAREY J P.Handbook of Advances in Braided Composite Materials. Elsevier: Woodhead Publishing, 2017: 239-257. DOI:10.1016/b978-0-08-100369-5.00006-4.
[28] DHAKAL H N,ZHANG Z Y,RICHARDSON M O W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites[J]. Composites Science and Technology, 2007, 67(7/8): 1674-1683. DOI:10.1016/j.compscitech.2006.06.019.
[29] MCKENNA H A, HEARLE J W S, O'HEAR N. Handbook of fibre rope technology[M]. Cambridge:Woodhead Publishing Limited, 2004.
[30] GOYAL D, TANG X, WHITCOMB J D, et al. Effect of various parameters on effective engineering properties of 2×2 braided composites[J]. Mechanics of Advanced Materials and Structures, 2005, 12(2): 113-128. DOI:10.1080/15376490490493998.
[31] DUC F, BOURBAN P E, MANSON J A E. Dynamic mechanical properties of epoxy/flax fibre composites[J]. Journal of Reinforced Plastics and Composites, 2014, 33(17): 1625-1633. DOI:10.1177/0731684414539779.

相似文献/References:

[1]张爱红,魏强,王伟宏*.陈放温度对黄麻纤维/酚醛树脂复合材料力学性能的影响[J].林业工程学报,2018,3(04):112.[doi:10.13360/j.issn.2096-1359.2018.04.019]
 ZHANG Aihong,WEI Qiang,WANG Weihong*.Effect of drying temperature on mechanical properties of jute fiber/phenol-formaldehyde resin composite[J].Journal of Forestry Engineering,2018,3(01):112.[doi:10.13360/j.issn.2096-1359.2018.04.019]

备注/Memo

备注/Memo:
收稿日期:2019-03-05 修回日期:2019-10-25
基金项目:国家重点研发计划(2017YFD0600802)。
作者简介:小可,男,研究方向为生物质复合材料。通信作者:韩广萍,女,教授。E-mail:guangping.han@nefu.edu.cn
更新日期/Last Update: 2019-12-10