[1]谭伟,郝笑龙,王清文,等.热致液晶共聚酯增强竹塑复合材料的力学和热性能[J].林业工程学报,2020,5(01):97-103.[doi:10.13360/j.issn.2096-1359.201903036]
 TAN Wei,HAO Xiaolong,WANG Qingwen,et al.Mechanical and thermal properties of bamboo plastic composites reinforced by thermotropic liquid crystal copolyesters[J].Journal of Forestry Engineering,2020,5(01):97-103.[doi:10.13360/j.issn.2096-1359.201903036]
点击复制

热致液晶共聚酯增强竹塑复合材料的力学和热性能()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
97-103
栏目:
生物质能源与材料
出版日期:
2020-01-07

文章信息/Info

Title:
Mechanical and thermal properties of bamboo plastic composites reinforced by thermotropic liquid crystal copolyesters
文章编号:
2096-1359(2020)01-0097-07
作者:
谭伟郝笑龙王清文欧荣贤*
华南农业大学材料与能源学院,广州 510642
Author(s):
TAN Wei HAO Xiaolong WANG Qingwen OU Rongxian*
College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
关键词:
竹塑复合材料 热致液晶共聚酯 力学性能 结晶 蠕变 热稳定性
Keywords:
bamboo plastic composites thermotropic liquid crystal copolyester mechanical property crystallization creep thermal stability
分类号:
S785
DOI:
10.13360/j.issn.2096-1359.201903036
文献标志码:
A
摘要:
与热塑性聚合物相比,热致液晶聚合物(TLCP)具有更低的黏度和更高的结晶度,以及更好的力学性能,有望用于增强竹塑复合材料(BPC)。利用不同质量分数的热致液晶聚合物(对羟基苯甲酸/2-羟基-6-萘甲酸共聚酯,HBA/HNA)作为增强相,马来酸酐接枝聚丙烯作为界面相容剂,通过熔融共混增强等规聚丙烯(PP),并以增强PP作为基体制备了竹粉质量分数为55%的BPC。通过力学测试、动态力学分析、差热分析、X射线衍射、蠕变分析、热重分析和热机械分析等方法,研究了HBA/HNA对BPC力学性能、结晶行为、蠕变行为和热稳定性的影响。结果显示,当HBA/HNA质量分数为PP质量的3%时,BPC的冲击强度和弯曲强度分别提高了35%和10%,而过高的HBA/HNA质量分数会降低增强效果。HBA/HNA未改变PP基体的晶型,但显著提高了PP的结晶温度、结晶速率和结晶度。刚性HBA/HNA限制了PP基体分子链的运动、滑移和取向,从而提高了30 ℃时BPC的抗蠕变能力。HBA/HNA的加入降低了BPC在30~60 ℃时厚度方向上的线性热膨胀系数和热膨胀率,提高了BPC的热稳定性。因此,通过HBA/HNA改性PP是提升BPC性能的有效方法。
Abstract:
Thermotropic liquid crystal polymer(TLCP)could be used as a potential reinforcer for the bamboo plastic composites(BPC)due to its many obvious advantages of lower viscosity, better orientation ability, higher crystallinity, higher mechanical properties compared with the thermoplastic polymer. The TLCP, p-hydroxy benzoic acid/2-hydroxyl-6-naphthalic acid copolyester(HBA/HNA)was melt-blended with the isotactic polypropylene(PP)and maleic anhydride grafted polypropylene at various mass ratios. The enhanced PP was used to fabricate BPC that contained 55wt% bamboo fibers. The enhancement effects of HBA/HNA on the mechanical properties, crystallization behavior, creep behavior and thermal stability of BPC were examined by the mechanical testing, dynamic mechanical analysis, differential scanning calorimetry, X-ray diffraction, creep testing, thermogravimetric analysis and thermal mechanical analysis, respectively. The results showed that the incorporation of 3wt% HBA/HNA caused the 35% increase in impact and the 10% increase in flexural strength of BPC. However, the tensile strength was slightly decreased. Higher HBA/HNA content led to uneven dispersion in the PP matrix, which reduced its enhancement effect on BPC. As a nucleating agent, the HBA/HNA increased the crystallization temperature, crystallization rate and crystallinity of the PP matrix significantly, but the crystal structure of PP was remained unchanged. The creep resistance of BPC was improved at 30 ℃ because the stiff HBA/HNA inhibited the molecular motion, slippage and reorientation of the PP matrix chains. Compared with the control specimen, the HBA/HNA decreased the linear coefficient of thermal expansion(LCTE)and the thermal expansion rate of BPC in the thickness direction, which were tested from the temperatures ranging from 30 ℃ to 60 ℃. The addition of HBA/HNA increased the pyrolysis temperature of PP and promoted the formation of carbon layer during the pyrolysis process, thus improving the thermal stability of BPC. These findings demonstrated that the incorporation of HBA/HNA can substantially reinforce PP based BPC.

参考文献/References:

[1] 蔡培鑫. PP木塑复合材料性能及其影响因素的研究[D]. 杭州: 杭州师范大学, 2012.
CAI P X. Study on properties and central influencing factors of polypropylene/wood flour composites[D]. Hangzhou: Hangzhou Normal University, 2012.
[2] FABIYI J S, MCDONALD A G. Degradation of polypropylene in naturally and artificially weathered plastic matrix composites[J]. Maderas Ciencia Y Tecnología, 2014, 16(3): 275-290. DOI:10.4067/s0718-221x2014005000021.
[3] 谭林朋, 袁光明, 牟明明. 木塑复合材料增强改性研究进展[J]. 化工新型材料, 2018, 46(6): 23-26.
TAN L P, YUAN G M, MU M M. Research progress on the strengthening property of wood plastic composite[J]. New Chemical Materials, 2018, 46(6): 23-26.
[4] 杜凤, 王伟宏. 碳纤维增强木粉/聚乙烯复合材料的制备及其力学性能[J]. 南京林业大学学报(自然科学版), 2015, 39(2): 132-136. DOI:10.3969/j.issn.1000-2006.2015.02.023.
DU F, WANG W H. Preparation and mechanical properties of carbon fiber reinforced WF/HDPE composites[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(2): 132-136.
[5] OU R X, GUO C G, XIE Y J, et al. Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/HDPE composites[J]. BioResources, 2011, 6(4): 4547-4565.
[6] 张娟, 宁莉萍, 杨红军, 等. 玻璃纤维含量对竹粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2016, 33(3):477-485. DOI:10.13801/j.cnki.fhclxb.20150623.004.
ZHANG J, NING L P, YANG H J, et al. Effects of glass fiber content on properties of bamboo flour/high density polythylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 477-485.
[7] 郝建秀, 杜凤, 王伟宏. 短切碳纤维表面处理对木粉/高密度聚乙烯复合材料性能的影响[J]. 复合材料学报, 2018, 35(2): 298-303. DOI:10.13801/j.cnki.fhclxb.20170418.002.
HAO J X, DU F, WANG W H. Effect of surface treatment of short carbon fibers on the properties of wood flour/high density polyethylene composite[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 298-303.
[8] 栗越, 张京发, 易顺民, 等. 改性芳纶纤维增强木粉/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2019, 36(3): 638-645. DOI:10.13801/j.cnki.fhclxb.20180530.006.
LI Y, ZHANG J F, YI S M, et al. Mechanical properties of modified aramid fiber reinforced wood flour/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 638-645.
[9] 程然, 王海刚, 刘天, 等. 聚酯纤维增强木粉/HDPE复合材料的力学及吸水性能[J]. 新型建筑材料, 2014, 41(4): 79-82. DOI:10.3969/j.issn.1001-702X.2014.04.024.
CHENG R, WANG H G, LIU T, et al. The mechanical properties and water absorption of polyethylene terephthalate fiber reinforced wood/HDPE composites[J]. New Building Materials, 2014, 41(4): 79-82.
[10] SAENGSUWAN S, BUALEK-LIMCHAROEN S, MITCHELL G R, et al. Thermotropic liquid crystalline polymer(Rodrun LC5000)/polypropylene in situ composite films:rheology, morphology, molecular orientation and tensile properties[J]. Polymer, 2003, 44(11): 3407-3415. DOI:10.1016/s0032-3861(03)00244-1.
[11] ELKSNITE I, MERIJS-MERI R, REINHOLDS I, et al. Thermal analysis, mechanical and rheological behaviour of melt manufactured polyethylene/liquid crystal polymer blends[J]. Materials Science, 2011, 17(2): 145-149. DOI:10.5755/j01.ms.17.2.483.
[12] DE SOUZA J P, BAIRD D G. In situ composites based on blends of a poly(ether imide)and thermotropic liquid crystalline polymers under injection moulding conditions[J]. Polymer, 1996, 37(10): 1985-1997. DOI:10.1016/0032-3861(96)87317-4.
[13] ZHOU J S, YAN F Y. Mechanical and tribological behavior of compatibilized ultra-high-molecular-weight polyethylene/liquid crystalline polymer composites[J]. Polymer Testing, 2004, 23(7): 827-833. DOI:10.1016/j.polymertesting.2004.02.007.
[14] SAIKRASUN S, SAENGSUWAN S. Thermal decomposition kinetics of in situ reinforcing composite based on polypropylene and liquid crystalline polymer[J]. Journal of Materials Processing Technology, 2009, 209(7): 3490-3500. DOI:10.1016/j.jmatprotec.2008.08.005.
[15] RIISE B L, MIKLER N, DENN M M. Rheology of a liquid crystalline polymer dispersed in a flexible polymer matrix[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 86(1/2): 3-14. DOI:10.1016/s0377-0257(98)00199-2.
[16] SHEN J B, CHEN B S, ZHU J M, et al. Morphological evolution of thermotropic liquid crystalline copolyester and its effects on rheological, thermal and flame-retarding behaviors of polycarbonate[J]. Polymer Degradation and Stability, 2014, 102:74-80. DOI:10.1016/j.polymdegradstab.2014.02.006.
[17] HSU C Y, YANG T C, WU T L, et al. The influence of bamboo fiber content on the non-isothermal crystallization kinetics of bamboo fiber-reinforced polypropylene composites(BPCs)[J]. Holzforschung, 2018, 72(4): 329-336. DOI:10.1515/hf-2017-0046.
[18] 李思远, 杨伟, 史炜, 等. 木粉/聚丙烯复合材料力学性能及结晶行为研究[J]. 塑料工业, 2005, 33(z1): 146-149. DOI:10.3321/j.issn:1005-5770.2005.z1.042.
LI S Y, YANG W, SHI W, et al. Mechanical properties and crystallization behavior of PP/wood flour composites[J]. China Plastics Industry, 2005, 33(z1): 146-149.
[19] BOUZA R, MARCO C, NAFFAKH M, et al. Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(8): 935-949. DOI:10.1016/j.compositesa.2011.03.022.
[20] JIA M Y, XUE P, ZHAO Y S, et al. Creep behaviour of wood flour/poly(vinyl chloride)composites[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2009, 24(3): 440-447. DOI:10.1007/s11595-009-3440-2.
[21] 黄晓东, 江泽慧, 程海涛, 等. 毛竹竹青片的动态热机械分析[J]. 林业科技开发, 2008, 22(5): 45-47. DOI:10.3969/j.issn.1000-8101.2008.05.013.
HUANG X D, JIANG Z H, CHENG H T, et al. Study on dynamic mechanical thermal analysis for green covering of bamboo[J]. China Forestry Science and Technology, 2008, 22(5): 45-47.
[22] 吕建雄, 彭辉, 曹金珍, 等. 动态力学分析技术在木材科学研究领域的应用[J]. 林业工程学报, 2018, 3(5): 1-11. DOI:10.13360/j.issn.2096-1359.2018.05.001.
LYU J X, PENG H, CAO J Z, et al. Application of dynamic mechanical analysis in wood science research[J]. Journal of Forestry Engineering, 2018, 3(5): 1-11.
[23] HOSSEINAEI O, WANG S Q, ENAYATI A A, et al. Effects of hemicellulose extraction on properties of wood flour and wood-plastic composites[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(4): 686-694. DOI:10.1016/j.compositesa.2012.01.007.
[24] KUO P Y, WANG S Y, CHEN J H, et al. Effects of material compositions on the mechanical properties of wood-plastic composites manufactured by injection molding[J]. Materials & Design, 2009, 30(9): 3489-3496. DOI:10.1016/j.matdes.2009.03.012.
[25] NÖRNBERG B, BORCHARDT E, LUINSTRA G A, et al. Wood plastic composites from poly(propylene carbonate)and poplar wood flour-Mechanical, thermal and morphological properties[J]. European Polymer Journal, 2014, 51:167-176. DOI:10.1016/j.eurpolymj.2013.11.008.
[26] 吴春渝, 李大纲, 闫微丽, 等. 温度对竹塑复合材料尺寸稳定性的影响[J]. 林业科技开发, 2008, 22(6): 48-50. DOI:10.3969/j.issn.1000-8101.2008.06.012.
WU C Y, LI D G, YAN W L, et al. The effect of temperature on dimension stability of bamboo plastic composites[J]. China Forestry Science and Technology, 2008, 22(6): 48-50.
[27] 蔡培鑫, 吕群, 梁梦杰, 等. 木塑复合材料配方组成对其线性热膨胀系数的影响[J]. 塑料, 2011, 40(6): 79-82.
CAI P X, LYU Q, LIANG M J, et al. Effect of main components on the linear thermal expansion coefficient of wood-plastic composite[J]. Plastics, 2011, 40(6): 79-82.

相似文献/References:

[1]吴春渝,李大纲,闫微丽,等.温度对竹塑复合材料尺寸稳定性的影响[J].林业工程学报,2008,22(06):48.

备注/Memo

备注/Memo:
收稿日期:2019-03-29 修回日期:2019-07-15
基金项目:国家自然科学基金(31600459)。
作者简介:谭伟,男,研究方向为生物质复合材料。通信作者:欧荣贤,男,副教授。E-mail: rongxian_ou@scau.edu.cn
更新日期/Last Update: 2019-12-10