ZHONG Jinhuan,LIU Wenfang,ZHAO Lei,et al.Effect of heat treatment on bamboo charcoal far-infrared emissivity[J].Journal of Forestry Engineering,2020,5(01):104-108.[doi:10.13360/j.issn.2096-1359.201812041]





Effect of heat treatment on bamboo charcoal far-infrared emissivity
浙江农林大学工程学院,杭州 311300
ZHONG Jinhuan LIU Wenfang ZHAO Lei ZHANG Wenbiao* LI Wenzhu
School of Engineering, Zhejiang A& F University, Hangzhou 311300, China
竹炭 热处理 远红外发射率 理化性能 结晶度 比表面积 孔径
bamboo charcoal heat treatment far-infrared emissivity physical and chemical properties crystallinity specific surface area pore size
竹炭是一种优良的可再生生物质碳材料,具有独特的孔隙结构和吸附性能,常用于制备各种功能复合材料,而竹炭因其优异的远红外反射性能被广泛应用于保暖织物和健康保健等领域。通过元素分析、FT-IR、BET和XRD等表征方法分析了热处理后竹炭的性能特征,并研究了竹炭远红外发射率的影响因素。结果表明:对竹炭进行热处理后,随着温度的上升,竹炭红外发射率呈现先维持相对稳定阶段而后上升的趋势,然后保持在较高值的现象。对竹炭进行表征后发现:当热处理温度低于600 ℃时,竹炭固定碳等组分相对稳定,其红外发射率保持稳定且无显著变化; 在温度600~800 ℃时,其红外发射率与温度则呈线性正相关; 当温度超过800 ℃时,竹炭红外发射率保持在较高值; 比表面积试验表明800 ℃热处理时比表面积达到最大值,竹炭远红外发射率与其比表面积呈正相关,而与其平均孔径则呈负相关; XRD结果表明竹炭的结晶度会影响其远红外发射率,但关联性较弱。由此可知,竹炭热处理可以提高其远红外发射率,热处理以800 ℃为宜,远红外发射率性达到0.95,且竹炭远红外发射率主要受其固定碳质量分数影响,此外还受比表面积和孔径的影响。
Bamboo charcoal is a renewable carbonaceous biomass with unique pore structure and adsorption properties. It is commonly used in the preparation of various functional composites, such as warm-keeping fabrics and health care products due to its excellent far infrared reflection properties. In this paper, the far-infrared emissivity performance of the heat-treated bamboo charcoal was studied. The far infrared(FIR)emissivity of bamboo charcoals(BCs)that were prepared through a heat treatment in advance was investigated systematically. The elemental analysis, Fourier transform infrared spectroscopy(FT-IR), specific surface area test, and X-ray diffraction(XRD)characterizations were respectively conducted to analyze the FIR emissivity properties of heat-treated bamboo charcoals, and the factors' effect on the FIR emissivity of bamboo charcoals were also discussed. The results showed that, with the increase of the heat treatment temperature, the FIR emissivity of bamboo charcoals increased gradually, and then maintained at a relatively high level after a rapid rise. Characterization results of bamboo charcoals also illustrated that the carbon content of bamboo charcoals remained stable with a heat treatment temperature below 600 ℃. No notable changes were observed for the FIR emissivity of bamboo charcoals and a linear correlation between the FIR emissivity and carbon content was found at a temperature ranged from 600 ℃ to 800 ℃, in which, the FIR emissivity reached a plateau when the heat treatment continued to above 800 ℃. BET measurements showed that the specific surface area was maximized for bamboo charcoals when the heat treatment temperature was 800 ℃. It was demonstrated a positive correlation between the FIR emissivity and specific surface area of bamboo charcoals, while a negative correlation between the FIR emissivity and the average pore size of bamboo charcoals. The XRD patterns suggested that there was a weak correlation between the FIR emissivity and crystallinity of bamboo charcoals. It can be concluded that, the FIR emissivity of bamboo charcoals can be greatly improved with a heat treatment, reaching up to 0.95 at a temperature of 800 ℃, which was the most versatile for warm-keeping textiles and health-care applications. The FIR emissivity of bamboo charcoals was mainly determined by the carbon content of bamboo charcoals, for that matter, the specific surface area as well as the average pore size also severed as indispensable factors affecting the FIR emissivity of bamboo charcoals.


[1] 季冠芳, 杨子彬. 远红外线的生物学效应及其应用[J]. 天津医药, 2007, 35(1): 78-80. DOI:CNKI:SUN:TJYZ.0.2007-01-044.
JI G F, YANG Z B. Biological effects of far-infrared ray and its application[J]. Tianjin Medical Journal, 2007, 35(1): 78-80.
[2] SHEPPARD A R, SWICORD M L, BALZANO Q. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes[J]. Health Physics, 2008, 95(4): 365-396. DOI:10.1097/01.hp.0000319903.20660.37.
[3] 邓昕玥. 远红外功能材料的特征与功能[J]. 科技风, 2016, 12(23): 3. DOI:10.19392/j.cnki.1671-7341.201623003.
DENG X Y. Features and functions of far-infrared functional materials[J]. Technology Wind, 2016, 12(23): 3.
[4] 陈衡. 红外物理学[M]. 北京:国防工业出版社, 1985.
CHEN H. Infrared physics[M]. Beijing:National Defense Industry Press, 1985.
[5] 张文标. Fe3+/TiO2改性竹炭催化降解甲醛[J]. 林业科学, 2012, 48(4): 113-118. DOI:CNKI:SUN:LYKE.0.2012-04-020.
ZHANG W B. Catalytic degradation of formaldehyde with Fe3+/TiO2 modified bamboo charcoal[J]. Scientia Silvae Sinicae, 2012, 48(4): 113-118.
[6] LIAO P, ZHAN Z Y, DAI J, et al. Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal:a batch and fixed-bed column study[J]. Chemical Engineering Journal, 2013, 228:496-505. DOI:10.1016/j.cej.2013.04.118.
[7] 王伟龙, 张文标, 钟泰林, 等. 竹炭对草本花卉生长的影响[J]. 世界竹藤通讯, 2005, 3(1): 24-26. DOI:10.13640/j.cnki.wbr.2005.01.013.
WANG W L, ZHANG W B, ZHONG T L, et al. The influence of bamboo charcoal on herbaceous flowers growth[J]. World Bamboo and Rattan, 2005, 3(1): 24-26.
[8] 张文标, 李文珠, 闫国祺. 载铜竹炭的制备及电磁屏蔽效能[J]. 林业工程学报, 2016, 1(2): 59-65. DOI:10.13360/j.issn.2096-1359.2016.02.011.
ZHANG W B, LI W Z, YANG G Q. Preparation and electromagnetic shielding effectiveness of copper-loaded bamboo charcoal[J]. Journal of Forestry Engineering, 2016, 1(2): 59-65.
[9] 李文珠, 章敏, 闫国祺, 等. 竹炭远红外性能研究及发展趋势[J]. 世界竹藤通讯, 2010, 8(6): 1-3. DOI:10.13640/j.cnki.wbr.2010.06.001.
LI W Z, ZHANG M, YANG G Q, et al. Research and development of far-Infrared bamboo charcoal[J]. World Bamboo and Rattan, 2010, 8(6): 1-3.
[10] 郭兴忠, 张玲洁, 杨辉, 等. 竹炭/电气石复合材料的远红外性能分析[J]. 中国陶瓷工业, 2010, 17(1): 1-4. DOI:10.13958/j.cnki.ztcg.2010.01.003.
GUO X Z, ZHANG L J, YANG H, et al. Far-infrared performance analysis of bamboo charcoal/tourmaline composites[J]. China Ceramic Industry, 2010, 17(1): 1-4.
[11] 江茂生, 黄彪, 陈学榕, 等. 木材炭化机理的FT-IR光谱分析研究[J]. 林产化学与工业, 2005, 25(2): 16-20. DOI:10.3321/j.issn:0253-2417.2005.02.004.
JIANG M S, HUANG B, CHEN X R, et al. FT-IR spectroscopic analysis on wood carbon jzation mechanism[J]. Chemistry and Industry of Forest Products, 2005, 25(2): 16-20.
[12] 左宋林, 江小华. 磷酸催化竹材炭化的FT-IR分析[J]. 林产化学与工业, 2005, 25(4): 21-25. DOI:10.3321/j.issn:0253-2417.2005.04.005.
ZUO S L, JIANG X H. FT-IR analysis of carbonized bamboo catalyzed by phosphoric acid[J]. Chemistry and Industry of Forest Products, 2005, 25(4): 21-25.
[13] 孙毅, 张文标, 林启晨, 等. 焙烧温度对3种竹材焙烧炭性能的影响[J]. 林业工程学报, 2016, 1(1): 11-13. DOI:10.13360/j.issn.2096-1359.2016.01.012.
SUN Y, ZHANG W B, LIN Q C, et al. Effect of torrefaction temperature on the properties of three type of bamboo charcoal[J]. Journal of Forestry Engineering, 2016, 1(1): 11-13.
[14] PRAHAS D, KARTIKA Y, INDRASWATI N, et al. Activated carbon from jackfruit peel waste by H3PO4 chemical activation:pore structure and surface chemistry characterization[J]. Chemical Engineering Journal, 2008, 140(1): 32-42. DOI:10.1016/j.cej.2007.08.032.
[15] BHUIYAN M T R, HIRAI N, SOBUE N. Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions[J]. Journal of Wood Science, 2000, 46(6): 431-436. DOI:10.1007/BF00765800.


 ZHANG Wenbiao,LI Wenzhu,YAN Guoqi.Preparation and electromagnetic shielding performance of copper-loaded bamboo charcoal[J].Journal of Forestry Engineering,2016,1(01):59.[doi:10.13360/j.issn.2096-1359.2016.02.011]
 MO Junqian,ZHANG Wenbo*.Physical and mechanical properties of heat-treated bamboo using near infrared reflectance spectroscopy[J].Journal of Forestry Engineering,2019,4(01):32.[doi:10.13360/j.issn.2096-1359.2019.01.005]


收稿日期:2018-12-28 修回日期:2019-10-29
基金项目:浙江省重点研发计划(2018C2008); 国家林业行业标准制修订项目计划(2015-LY-108)。
更新日期/Last Update: 2019-12-10