[1]李震,王鹏,刘彭,等.基于流固耦合的环模成型机关键部件疲劳寿命分析[J].林业工程学报,2020,5(01):122-128.[doi:10.13360/j.issn.2096-1359.201811006]
 LI Zhen,WANG Peng,LIU Peng,et al.Fatigue life analysis of key components of ring molding machine based on fluid-solid coupling[J].Journal of Forestry Engineering,2020,5(01):122-128.[doi:10.13360/j.issn.2096-1359.201811006]
点击复制

基于流固耦合的环模成型机关键部件疲劳寿命分析()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
122-128
栏目:
装备与信息化
出版日期:
2020-01-07

文章信息/Info

Title:
Fatigue life analysis of key components of ring molding machine based on fluid-solid coupling
文章编号:
2096-1359(2020)01-0122-07
作者:
李震王鹏刘彭高雨航王宏强
内蒙古科技大学机械工程学院,内蒙古 包头 014010
Author(s):
LI Zhen WANG Peng LIU Peng GAO Yuhang WANG Hongqiang
College of Machine Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
关键词:
环模成型机 流固耦合 疲劳寿命 生物质成型 生物质燃料
Keywords:
ring molding machine fluid-solid coupling fatigue life biomass molding biomass fuel
分类号:
S776; TK6
DOI:
10.13360/j.issn.2096-1359.201811006
文献标志码:
A
摘要:
环模成型机是生物质燃料的主要加工设备,由于环模在生产过程中容易发生疲劳破坏,因此对其进行应力及疲劳分析具有重要意义。利用流固耦合分析法对以沙柳细枝颗粒为生产原料的环模成型机进行综合分析,通过简化压辊与环模模型,在保证结果精度的前提下缩短了仿真分析所需要的时间,采用的湍流模型能够更准确地反映出物料在成型过程中的流动特性。将流体域和固体域的结果进行耦合分析,得到了压辊和环模部件的最大变形量分别为0.608和0.600 mm,最大应力分别为30.50和90.05 MPa,均发生在压辊与环模的最小间隙处。分析得出压辊与环模的疲劳寿命云图,结果显示,在生物质成型过程中,环模在靠近模孔位置处由于应力集中更容易发生疲劳破坏,其最小寿命为3.12×106次。最后通过与传统应力分析方法得到的环模疲劳寿命结果进行比较,运用流固耦合分析法得到的环模疲劳寿命分析结果更加符合实际的磨损和疲劳情况,验证了运用流固耦合对环模压辊进行应力分析以及疲劳分析方法的可行性,同时为环模的研发提供了理论支持和方法借鉴。
Abstract:
The ring molding machine is the major processing equipment for producing biomass products. The key parts of the ring forming machine are prone to fatigue damage during the production process, which would affect the production efficiency. Therefore, it is necessary to analyze the stress and fatigue of the parts of the ring molding machine which are prone to fatigue failure. This research mainly used the fluid-solid coupling analysis method and used the salix fine-grain particles as the raw material for simulation analysis to comprehensively investigate the performance of the pressure roller and ring mold of the ring forming machine under the working condition. A suitable operation was to simplify the three-dimensional model of the pressure roller and the ring mold of the molding machine, which shortened the time and effort used on the simulation analysis to ensure the accuracy of the analysis results. A more accurate operation was to use a turbulence model, which could more accurately reflect the flow characteristics of the raw material in the working area of the ring mold and the pressure roller during the molding process. The fluid domain was simulated separately. Similarly, the solid domain was also analyzed separately. After that, the results of the separate analysis were coupled and analyzed, which was the most critical step in the simulation analysis. The maximum deformation of the pressure roller and the ring die part was 0.608 and 0.600 mm, respectively, and the maximum stresses were 30.50 and 90.05 MPa, respectively. For the maximum deformation and maximum stress of the ring die and the pressure roller, the results showed that they all occurred at the smallest gap between the pressure roller and the ring mold. The fatigue life cloud diagram of the pressure roller and the ring die was obtained. The fatigue life cloud diagram showed that, during the biomass molding process, the ring mold was more likely to be fatigue-damaged due to the stress concentration at the position closer to the inlet of the mold material. Its minimum life was 3.12×106 times. Finally, by comparing the fatigue life results of the ring model obtained by the traditional stress analysis method, the fatigue life analysis results of the ring model obtained by the fluid-solid coupling analysis method were more in line with the actual wear and fatigue. The final results verified the feasibility of using fluid-solid coupling method to stress analysis and fatigue analysis of ring mold and pressure roller, and could provide theoretical support and analytical methods for the design and production of ring molds.

参考文献/References:

[1] 简相坤, 刘石彩. 生物质固体成型燃料研究现状及发展前景[J]. 生物质化学工程, 2013, 47(2): 54-58.
JIAN X K, LIU S C. Research status and development prospect of densified biofuel[J]. Biomass Chemical Engineering, 2013, 47(2): 54-58.
[2] LIU B C, SHANG Y X, XU Y M, et al. Analysis of the ring die of biomass energy molding machine based on ANSYS[J]. Key Engineering Materials, 2013, 561:417-421. DOI:10.4028/www.scientific.net/KEM.561.417.
[3] 德雪红, 俞国胜, 陈忠加, 等. 柱塞式生物质环模成型机环模凹模磨损预测[J]. 北京林业大学学报, 2015, 37(6): 112-119. DOI:10.13332/j.1000-1522.20140410.
DE X H, YU G S, CHEN Z J, et al. Prediction of wear about ring die of plunger biomass briquetting machine[J]. Journal of Beijing Forestry University, 2015, 37(6): 112-119.
[4] CELIK H, YILMAZH S, RENNIE A, et al. Determination of the failure susceptibility of a flat die used in biomass pelletizing machines by means of FEA-based design exploration[J]. Journal of Failure Analysis and Prevention, 2018, 18(5): 1099-1110. DOI:10.1007/s11668-018-0497-2.
[5] 陈树人, 肖君, 刘超. 9JYK-2000A秸秆压块机环模摩擦试验[J]. 江苏大学学报(自然科学版), 2017, 38(1): 42-46. DOI:10.3969/j.issn.1671-7775.2017.01.08.
CHEN S R, XIAO J, LIU C. Friction experiment of 9JYK-2000A straw briquetting machine[J]. Journal of Jiangsu University(Natural Science Edition), 2017, 38(1): 42-46.
[6] 李震, 俞国胜, 薛冰. 基于ABAQUS/Fe-safe生物质成型机环模疲劳寿命分析[J]. 农机化研究, 2014, 36(7): 225-227. DOI:10.13427/j.cnki.njyi.2014.07.054.
LI Z, YU G S, XUE B. Based on ABAQUS/Fe-safe biomass molding machine ring die fatigue life analysis[J]. Journal of Agricultural Mechanization Research, 2014, 36(7): 225-227.
[7] 蒋清海, 武凯, 孙宇, 等. 生物质制粒机环模的磨损机理分析[J]. 农业工程学报, 2013, 29(22): 42-49. DOI:10.3969/j.issn.1002-6819.2013.22.005.
JIANG Q H, WU K, SUN Y, et al. Wear mechanism analysis of ring die of pellet mill[J]. Transactions of the CSAE, 2013, 29(22): 42-49.
[8] 王慧, 陆萍, 吴云玉, 等. 基于COSMOS的生物质颗粒机环模寿命分析[J]. 农机化研究, 2011, 33(8): 193-196. DOI:10.13427/j.cnki.njyi.2011.08.016.
WANG H, LU P, WU Y Y, et al. Life study of biomass loop die based on COSMOS[J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 193-196.
[9] 王咏梅, 黄晓鹏, 吴劲锋. 颗粒物料流体动力学特性的研究综述[J]. 中国农机化学报, 2017, 38(7): 94-99. DOI:10.13733/j.jcam.issn.2095-5553.2017.07.018.
WANG Y M, HUANG X P, WU J F. Review on fluid dynamic characteristics of granular materials[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(7): 94-99.
[10] 祝克强, 吴汉川, 乔春, 等. 采用流固耦合的混砂车搅拌叶轮应力分析[J]. 现代制造工程, 2012(3): 51-54. DOI:10.16731/j.cnki.1671-3133.2012.03.031.
ZHU K Q, WU H C, QIAO C, et al. Blender truck mixing impeller stress analysis based on fluid-structure interaction[J]. Modern Manufacturing Engineering, 2012(3): 51-54.
[11] 刘成文, 魏洪波, 李兆敏. 旋流式混合器对油管掺稀降黏效果影响的数值模拟[J]. 科学技术与工程, 2012, 12(16): 3848-3851.
LIU C W, WEI H B, LI Z M. Numerical simulation of the influence of swirl mixer on effect of blending dilute oil through oil tube[J]. Science Technology and Engineering, 2012, 12(16): 3848-3851.
[12] 王咏梅, 黄晓鹏, 吴劲锋. 不同工艺参数下苜蓿草粉环模制粒机流场的模拟与验证[J]. 农业工程学报, 2017, 33(21): 267-274. DOI:10.11975/j.issn.1002-6819.2017.21.033.
WANG Y M, HUANG X P, WU J F. Numerical simulation and verification of flow field in ring die pellet mill at different process parameters for alfalfa[J]. Transactions of the CSAE, 2017, 33(21): 267-274.
[13] 姚宗路, 张妍, 赵立欣, 等. 立式双层孔环模生物质压块机设计与试验[J]. 农业工程学报, 2016, 32(S1): 8-12.
YAO Z L, ZHANG Y, ZHAO L X, et al. Design and experiment of biomass briquetting machine with vertical double circular mould[J]. Transactions of the CSAE, 2016, 32(S1): 8-12.
[14] 仇平, 李兴兴, 赵铁石, 等. 秸秆压块机辊口式环模耐磨机理分析与试验[J]. 农业机械学报, 2016, 47(3): 112-116. DOI:10.6041/j.issn.1000-1298.2016.03.016.
QIU P, LI X X, ZHAO T S, et al. Wear-resisting mechanism analysis and experiment on circular mould of straw briquetting machine by rolling entrance structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 112-116.
[15] 夏先飞, 孙宇, 武凯, 等. 秸秆压块机组合环模的磨损机理[J]. 农业工程学报, 2014, 30(4): 32-39. DOI:10.3969/j.issn.1002-6819.2014.04.005.
XIA X F, SUN Y, WU K, et al. Wear mechanism of ring die for straw briquetting machine[J]. Transactions of the CSAE, 2014, 30(4): 32-39.

相似文献/References:

[1]刘新颖,于文华*.小型森林消防车振动特性试验[J].林业工程学报,2016,1(03):109.[doi:10.13360/j.issn.2096-1359.2016.03.020]
 LIU Xinying,YU Wenhua*.An experimental study on vibration characteristics of a light-duty forest fire truck[J].Journal of Forestry Engineering,2016,1(01):109.[doi:10.13360/j.issn.2096-1359.2016.03.020]

备注/Memo

备注/Memo:
收稿日期:2018-11-07 修回日期:2019-08-05
基金项目:国家自然科学基金(51666016); 内蒙古自治区自然科学基金(2016MS0544)。
作者简介:李震,男,教授,研究方向为生物质致密成型机理。E-mail:lizhen_730106@126.com
更新日期/Last Update: 2019-12-10