[1]王杰,茹煜*,周宏平,等.苗木喷雾机风送系统优化设计及气流场试验[J].林业工程学报,2020,5(01):129-138.[doi:10.13360/j.issn.2096-1359.201902007]
 WANG Jie,RU Yu*,ZHOU Hongping,et al.Optimal design and airflow field test of seedling sprayer air-assisted system[J].Journal of Forestry Engineering,2020,5(01):129-138.[doi:10.13360/j.issn.2096-1359.201902007]
点击复制

苗木喷雾机风送系统优化设计及气流场试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
129-138
栏目:
装备与信息化
出版日期:
2020-01-07

文章信息/Info

Title:
Optimal design and airflow field test of seedling sprayer air-assisted system
文章编号:
2096-1359(2020)01-0129-10
作者:
王杰茹煜*周宏平王水金倪佳胜张超
南京林业大学机械电子工程学院,南京 210037
Author(s):
WANG Jie RU Yu* ZHOU Hongping WANG Shuijin NI Jiasheng ZHANG Chao
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
苗木喷雾机 多出口装置 风送系统 流场模拟
Keywords:
seedling sprayer multi-outlet devices pneumatic system flow simulation
分类号:
S491
DOI:
10.13360/j.issn.2096-1359.201902007
文献标志码:
A
摘要:
针对国内多风管苗木喷雾机风送距离短、机型体积与载重量大的问题,对苗木喷雾机风送系统中的多出口装置结构进行优化模拟和试验验证。设计了多排八出口、多排六出口和双排八出口3种多出口装置,采用模拟和试验相结合的方法,得出多出口装置型式对出口风速和风压的影响规律。结果表明:试验与模拟风速数据大致相似,3种装置出口风速试验值和模拟值的拟合优度分别为0.596 6,0.968 8,0.696 3,验证数值模拟方法的可行性; 多排六出口装置出口风压最高,平均风压为662 Pa,各出口风压与风速变化趋势基本一致; 多排六出口装置出口风速比八出口高,出口风速范围在29.52~34.85 m/s,各出口风速均匀性更好; 在风机3 000 r/min转速下,风管出口风速在喷雾距离0~1.5 m范围内衰减较快,在5 m处风速衰减到1.5 m/s左右; 在相同风管高度间隔时,风速边界随风管出口数量增多而增大,与出口风速无关; 风送系统外流场在4 m距离内风场垂直面的雾滴沉积分布均匀性较好,5 m距离以上均匀性较差。综合考虑喷雾机整机尺寸和承载能力,多排六出口风送系统更合理,气流射程和雾滴沉积分布能满足5 m的作业要求。
Abstract:
In order to solve the problem of short air supply distance and large model size and load capacity of the domestic multi-duct seedling sprayer, the multi-outlet device in the seedling sprayer air-assisted system was optimized and tested. The seedling sprayer divided the single large outlet of the air-assisted sprayer with centrifugal fan into a plurality of small air outlets to transport the droplets through the multi-outlet device, and it could flexibly adjust the structure of the duct support, the length of the duct, and the position of the outlet for the multi-morphological characteristics of the seedlings. A variety of working modes could solve the problems of short spray distance and low utilization rate of liquid medicine. In order to ensure the bearing capacity and possibility requirements of the chassis, the seedling sprayer should be lightweight, and the multi-outlet device should be optimized. It was necessary to ensure that the air volume and the wind pressure loss provided by the air-assisted system was minimized, and the seedling pest control requirements could be met. In this paper, three kinds of multi-outlet devices were designed as multi-row eight outlets, multi-row six outlets, and double-row eight outlets. This article adopted the methods of computational fluid dynamics numerical simulation and experiment, and the influence of multi-outlet devices on the wind speed and wind pressure at the outlet was studied to obtain the structural features of the multi-outlet device that facilitated airflow transmission, and to verify the wind speed distribution of the external flow field of the air-assisted system, in order to provide reference for the performance optimization of the seedling sprayer air-assisted system. The results showed that the wind speed test results were similar to the simulated data. The article analyzed the fitting analysis of the test value and the simulated value for outlet wind speed of the three devices respectively, in order to verify the accuracy of the numerical simulation. The multi-row six outlets device had the highest outlet air pressure, and the average wind pressure was 662 Pa. The trend of wind pressure distribution at each outlet was basically the same as the wind speed distribution. The average wind speed at the outlet of the multi-row six outlets device was higher than that at the outlet of the eight outlets device, and the wind speed at the outlet ranged from 29.52 m/s to 34.85 m/s, and the uniformity of wind speed of the multi-row six outlets device at the outlet was the best. The measuring sections of the external flow field were 0.6 m, 1.2 m, 2 m, 3 m, 4 m and 5 m from the outlet of the air duct, and each section was arranged with two rows of vertically measuring points. At the 3 000 r/min speed, the wind speed distribution test of the external flow field of the pneumatic system was analyzed that the outlet wind speed of the ducts was attenuated faster in the range of 0 to 1.5 m, and the wind speed was attenuated to about 1.5 m/s at 5 m. At the same duct height interval, the wind speed boundary increased with the number of duct outlets, and it had nothing to do with the outlet wind speed of duct outlets. The airflow of each duct began to mix with each other to form a continuous external flow field within a spray range of 0.5 to 1.0 m. In the external flow field of the air delivery system, the uniformity of droplet deposition on the vertical surface of the wind field within 4 m distance was better, and the uniformity above 5 m distance was poor. Airflow with a duct height of 0.75 m, 1.25 m and 1.75 m had a similar speed at the same spray distance, and the wind speed difference at different heights decreased with the increase of spray distance. It was beneficial to evenly cover the entire working area and improve work efficiency. After the comprehensive analysis, when considering the integrated dimension and the load capacity of the seedlings prayer, the multi-row six outlets pneumatic system was more reasonable, and the spray range could reach operation requirements of 5 m.

参考文献/References:

[1] 郭峰, 陈建东, 郭辉, 等. 3WF-8型风送式果园喷雾机性能优化与改进[J]. 农机化研究, 2010, 32(11): 48-52, 56. DOI:10.13427/j.cnki.njyi.2010.11.027.
GUO F, CHEN J D, GUO H, et al. Performance optimization and advance of 3WF-8 air-assisted orchard sprayer[J]. Journal of Agricultural Mechanization Research, 2010, 32(11): 48-52, 56.
[2] 丁素明, 傅锡敏, 薛新宇, 等. 低矮果园自走式风送喷雾机研制与试验[J]. 农业工程学报, 2013, 29(15): 18-25. DOI:10.3969/j.issn.1002-6819.2013.15.003.
DING S M, FU X M, XUE X Y, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the CSAE, 2013, 29(15): 18-25.
[3] 张晓辛, 吕晓兰, 丁素明, 等. 果园风送式喷雾机仿形喷雾试验研究[J]. 中国农机化, 2011, 32(3): 68-72. DOI:10.3969/j.issn.1006-7205.2011.03.018.
ZHANG X X, LYU X L, DING S M, et al. Experimental research on profiling spray of air-assisted orchard sprayer[J]. Chinese Agricultural Mechanization, 2011, 32(3): 68-72.
[4] 王杰, 陶振洋, 茹煜, 等. 风机在农林植保机械中的应用研究现状及展望[J]. 中国农机化学报, 2016, 37(9): 67-74. DOI:10.13733/j.jcam.issn.2095-5553.2016.09.015.
WANG J, TAO Z Y, RU Y, et al. Research progress and outlook on application of fan in plant protection machinery of agriculture and forestry[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(9): 67-74.
[5] 张晓辉, 姜宗月, 范国强, 等. 履带自走式果园定向风送喷雾机[J]. 农业机械学报, 2014, 45(8): 117-122, 247. DOI:10.6041/j.issn.1000-1298.2014.08.019.
ZHANG X H, JIANG Z Y, FAN G Q, et al. Self-propelled crawler directional air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122, 247.
[6] 姜红花, 白鹏, 刘理民, 等. 履带自走式果园自动对靶风送喷雾机研究[J]. 农业机械学报, 2016, 47(S1): 189-195. DOI:10.6041/j.issn.1000-1298.2016.S0.029.
JIANG H H, BAI P, LIU L M, et al. Caterpillar self-propelled and air-assisted orchard sprayer with automatic target spray system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 189-195.
[7] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76. DOI:10.11975/j.issn.1002-6819.2017.01.009.
LI L L, HE X K, SONG J L, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the CSAE, 2017, 33(1): 70-76.
[8] 周良富, 薛新宇, 贾卫东, 等. CFD技术在果树风送喷雾中的应用与前景分析[J]. 排灌机械工程学报, 2014, 32(9): 776-782. DOI:10.3969/j.issn.1674-8530.14.0010.
ZHOU L F, XUE X Y, JIA W D, et al. Application of CFD technology in air-assisted spraying in orchard and analysis of its prospects[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(9): 776-782.
[9] SIDAHMED M M, BROWN R B. Simulation of spray dispersal and deposition from a forestry airblast sprayer-Part I:air jet model[J]. Transactions of the ASAE, 2001, 44(1): 5-10. DOI:10.13031/2013.2297.
[10] ENDALEW A M, DEBAER C, RUTTEN N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying-Part Ⅰ: model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(2): 128-136. DOI:10.1016/j.compag.2009.11.005.
[11] ENDALEW A M, DEBAER C, RUTTEN N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying-Part Ⅱ:validation for different sprayer types[J]. Computers and Electronics in Agriculture, 2010, 71(2): 137-147. DOI:10.1016/j.compag.2009.11.007.
[12] ENDALEW A M, DEBAER C, RUTTEN N, et al. Modelling pesticide flow and deposition from air-assisted orchard spraying in orchards:a new integrated CFD approach[J]. Agricultural and Forest Meteorology, 2010, 150(10): 1383-1392. DOI:10.1016/j.agrformet.2010.07.001.
[13] SALCEDO R, GRANELL R, PALAU G, et al. Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of Citrus[J]. Computers and Electronics in Agriculture, 2015, 116:150-161. DOI:10.1016/j.compag.2015.06.005.
[14] DUGA A T, DELELE M A, RUYSEN K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2017, 154: 62-75. DOI:10.1016/j.biosystemseng.2016.10.010.
[15] DEKEYSER D, DUGA A T, VERBOVEN P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169. DOI:10.1016/j.biosystemseng.2012.11.013.
[16] 傅泽田, 王俊, 祁力钧, 等. 果园风送式喷雾机气流速度场模拟及试验验证[J]. 农业工程学报, 2009, 25(1): 69-74.
FU Z T, WANG J, QI L J, et al. CFD simulation and experimental verification of air-velocity distribution of air-assisted orchard sprayer[J]. Transactions of the CSAE, 2009, 25(1): 69-74.
[17] 周良富, 张晓辛, 吕晓兰, 等. 圆盘雾化器风力性能数值模拟与试验[J]. 农业机械学报, 2012, 43(10): 72-75, 81. DOI:10.6041/j.issn.1000-1298.2012.10.013.
ZHOU L F, ZHANG X X, LYU X L, et al. Numerical simulation and experiment on wind performance of disc atomizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 72-75, 81.
[18] 王景旭, 祁力钧, 夏前锦. 靶标周围流场对风送喷雾雾滴沉积影响的CFD模拟及验证[J]. 农业工程学报, 2015, 31(11): 46-53. DOI:10.11975/j.issn.1002-6819.2015.11.007.
WANG J X, QI L J, XIA Q J. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the CSAE, 2015, 31(11): 46-53.
[19] 徐立章, 于丽娟, 李耀明, 等. 双出风口多风道离心风机内部流场数值模拟[J]. 农业机械学报, 2014, 45(10): 78-86. DOI:10.6041/j.issn.1000-1298.2014.10.013.
XU L Z, YU L J, LI Y M, et al. Numerical simulation of internal flow field in centrifugal fan with double outlet and multi-duct[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 78-86.
[20] 童水光, 沈强, 唐宁, 等. 纵轴流清选装置混合流场数值模拟与优化试验[J]. 农业机械学报, 2016, 47(7): 135-142. DOI:10.6041/j.issn.1000-1298.2016.07.019.
TONG S G, SHEN Q, TANG N, et al. Numerical simulation and optimization experiment of mixed flow field on longitudinal axial flow cleaning device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 135-142.
[21] 丁天航, 曹曙明, 薛新宇, 等. 果园喷雾机单双风机风道气流场仿真与试验[J]. 农业工程学报, 2016, 32(14): 62-68, 315. DOI:10.11975/j.issn.1002-6819.2016.14.009.
DING T H, CAO S M, XUE X Y, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the CSAE, 2016, 32(14): 62-68, 315.
[22] 邱威, 丁为民, 汪小旵, 等. 3WZ-700型自走式果园风送定向喷雾机[J]. 农业机械学报, 2012, 43(4): 26-30, 44. DOI:10.6041/j.issn.1000-1298.2012.04.006.
QIU W, DING W M, WANG X C, et al. 3WZ-700 self-propelled air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(4): 26-30, 44.
[23] ZHU H. For nursery and fruit tree crops—an intelligent sprayer[J]. Resource Magazine, 2014, 21(4): 20-21.
[24] 顾家冰. 风送式变量喷雾机气液两相流及雾化的试验研究[D]. 南京: 南京农业大学, 2012.
GU J B. Atomization and air-droplet flow fields of an air-assisted variable-rate sprayer for tree crop applications[D]. Nanjing: Nanjing Agricultural University, 2012.
[25] 张也影. 流体力学[M]. 北京: 高等教育出版社, 1999.
ZHANG Y Y. Hydromechanics[M]. Beijing: Higher Education Press, 1999.
[26] 万雷. 单级离心风机气动性能模拟与实验验证[D]. 哈尔滨: 哈尔滨工程大学, 2013.
WAN L. Computation and validation of aerodynamic performance on single stage centrifugal blower[D]. Harbin: Harbin Engineering University, 2013.
[27] 吕晓兰, 张美娜, 常有宏, 等. 果园风送喷雾机导流板角度对气流场三维分布的影响[J]. 农业工程学报, 2017, 33(15): 81-87. DOI:10.11975/j.issn.1002-6819.2017.15.010.
LYU X L, ZHANG M N, CHANG Y H, et al. Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution[J]. Transactions of the CSAE, 2017, 33(15): 81-87.
[28] 约翰. 计算流体力学基础及其应用[M]. 北京: 机械工业出版社, 2007.
JOHN D A. Computational fluid dynamics foundation and its application[M]. Beijing:China Machine Press, 2007.
[29] 李鹏飞, 徐敏义, 王飞飞. 精通CFD工程仿真与案例实战[M]. 北京: 人民邮电出版社, 2011.
LI P F, XU M Y, WANG F F. Proficient in CFD engineering simulation and case combat[M]. Beijing: Posts and Telecom Press, 2011.
[30] 杨振海. 拟合优度检验[M]. 北京: 科学出版社, 2011.
YANG Z H. Goodness of fit test[M]. Beijing: Science Press, 2011.

备注/Memo

备注/Memo:
收稿日期:2019-03-24 修订日期: 2019-06-09
基金项目:“十三五”国家重点研发计划(2018YFD0600202-04); 国家林业局“948”项目(2015-4-56)。
作者简介:王杰,男,研究方向为现代植保机械。通信作者:茹煜,女,教授。E-mail:superchry@163.com
更新日期/Last Update: 2019-12-10