[1]束义平,李秋洁,周宏平*,等.基于激光雷达探测的变量喷雾控制系统设计[J].林业工程学报,2020,5(01):139-147.[doi:10.13360/j.issn.2096-1359.201807014]
 SHU Yiping,LI Qiujie,ZHOU Hongping*,et al.Design of variable rate spray control system based on LiDAR detection[J].Journal of Forestry Engineering,2020,5(01):139-147.[doi:10.13360/j.issn.2096-1359.201807014]
点击复制

基于激光雷达探测的变量喷雾控制系统设计()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
139-147
栏目:
装备与信息化
出版日期:
2020-01-07

文章信息/Info

Title:
Design of variable rate spray control system based on LiDAR detection
文章编号:
2096-1359(2020)01-0139-09
作者:
束义平李秋洁周宏平*陶冉许林云
南京林业大学机械电子工程学院,南京 210037
Author(s):
SHU Yiping LI Qiujie ZHOU Hongping* TAO Ran XU Linyun
College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
变量喷雾 激光雷达 信息采集 实时控制 软件设计 植保机械
Keywords:
variable rate spray LiDAR information acquisition real-time control software design plant protection machinery
分类号:
S758
DOI:
10.13360/j.issn.2096-1359.201807014
文献标志码:
A
摘要:
变量对靶喷雾系统能够提高药液利用率,减少药液浪费。笔者确定了激光雷达探测的变量喷雾控制系统硬件结构; 研究了变量喷雾控制算法,通过采集信息计算靶标冠层体积,利用冠层体积计算对应喷嘴的PWM占空比,进而控制对应喷嘴的流速,其次分析了系统的延时,给出了系统5个部分响应时间的计算方法,实现系统延时补偿,确保了系统的实时性; 设计了激光雷达探测的变量喷雾控制系统:上位机采用MFC多线程编程,实现靶标采集、树冠体积计算、PWM生成以及延时补偿,其具有一定的人机交互功能; 下位机采用C51编程,用于接收上位机PWM指令,控制电磁阀启闭。体积计算试验验证了不同的速度和检测距离下系统靶标体积计算相对误差在10%以内,其计算方法具有一定的适用性。电磁阀控制参数与响应时间试验获取了系统PWM与喷嘴流速之间的关系参数以及电磁阀响应时间,结果表明PWM与流速之间呈线性关系,电磁阀的机构响应滞后于电信号响应约20 ms。
Abstract:
At present, spray of plant protection is a common technology for the prevention and control of agricultural and forestry diseases and insect pests. However, the traditional extensive spray would lead to waste and lower the utilization rate of liquid medicine. It is especially necessary to study the system of variable rate spray to improve the utilization rate and reduce the waste of liquid medicine. The hardware structure of variable rate spray control system based on 2D-LiDAR detection technology was designed in this paper. The upper computer processed the target information that was collected by the UTM-30LX laser radar. The lower computer controlled the solenoid valves through the obtained signals those were sent by the upper computer to realize variable rate spray. Variable rate spray control algorithms were investigated. The PWM duty cycle was generated according to the volume of the corresponding nozzle that was calculated by collecting the canopy information, and then the flow velocity of the corresponding nozzle was controlled. The algorithms determined the linear relationship between the PWM duty cycle and canopy volume of the corresponding nozzle. Then, the delay of the system was analyzed, and the calculation method for 5 components of the system response time was provided. The system delay compensation was realized and ensured the real-time performance by setting the FIFO buffers. The variable rate spray control system based on the 2D-LiDAR detection technology was designed. The upper computer adopted the MFC multi-thread programming to realize target data acquisition, canopy volume calculation, PWM duty cycle generation, delay time compensation, Human-computer interaction and communication between the upper and lower computers. The lower computer adopted C51 programming to receive the upper PWM instruction and solenoid valve on-off control. The volume calculation experiment obtained the regular object volume by the algorithms. It was verified that the relative error of the system volume calculation was within 10%, and the calculation method had applicability in the actual environment. The response time of the solenoid valve and the relationship of parameters between the system PWM and the nozzle flow rate was obtained through the experiment. The result showed that the linear relationship between the PWM and the flow rate and the mechanical response of the solenoid valve lagged behind the electrical signal response by about 20 ms.

参考文献/References:

[1] 周鸣川. 脉宽调制(PWM)变量喷雾及视觉辅助对靶植保技术研究[D]. 杭州: 浙江大学, 2015.
ZHOU M C. Pulse width modulation variable spray and target spray based on computer technology research[D]. Hangzhou: Zhejiang University, 2015.
[2] 王广莲, 张颖鑫. 现阶段植保机械和施药技术研究[J]. 吉林农业, 2019(3): 43. DOI:10.14025/j.cnki.jlny.2019.03.009.
WANG G L, ZHANG Y X. Research on plant protection machinery and pesticide application technology at the present stag[J]. Agriculture of Jilin, 2019(3): 43.
[3] 韩景红. 我国植保机械和施药技术的现状问题及对策[J]. 农业与技术, 2018, 38(12): 91.
HAN J H. Current problems and countermeasures of plant protection machinery and pesticide application technology in China[J]. Agriculture and Technology, 2018, 38(12): 91.
[4] 吴向辉, 何难. 农业部首次公布化肥、农药利用率数据[J]. 农化市场十日讯, 2016(3): 7.
WU X H, HE N. Ministry of Agriculture published data on fertilizer and pesticide utilization for the first time[J]. Journal of Agricultural Market, 2016(3): 7.
[5] ROSELL J R, SANZ R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers and Electronics in Agriculture, 2012, 81: 124-141. DOI:10.1016/j.compag.2011.09.007.
[6] LEE W S, ALCHANATIS V, YANG C, et al. Sensing technologies for precision specialty crop production[J]. Computers and Electronics in Agriculture, 2010, 74(1): 2-33. DOI:10.1016/j.compag.2010.08.005.
[7] 丁为民, 赵思琪, 赵三琴, 等. 基于机器视觉的果树树冠体积测量方法研究[J]. 农业机械学报, 2016, 47(6): 1-10, 20. DOI:10.6041/j.issn.1000-1298.2016.06.001.
DING W M, ZHAO S Q, ZHAO S Q, et al. Measurement methods of fruit tree canopy volume based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10, 20.
[8] 许林云, 张昊天, 张海锋, 等. 果园喷雾机自动对靶喷雾控制系统研制与试验[J]. 农业工程学报, 2014, 30(22): 1-9. DOI:10.3969/j.issn.1002-6819.2014.22.001.
XU L Y, ZHANG H T, ZHANG H F, et al. Development and experiment of automatic target spray control system used in orchard sprayer[J]. Transactions of the CSAE, 2014, 30(22): 1-9.
[9] 张美娜, 吕晓兰, 雷哓晖. 可移植的对靶喷雾控制系统设计与试验[J]. 江苏农业学报, 2017, 33(5): 1182-1187. DOI:10.3969/j.issn.1000-4440.2017.05.034.
ZHANG M N, LYU X L, LEI X H. Design and testing on a transplantable target spraying control system for the spraying machine[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(5): 1182-1187.
[10] ZHENG J Q, JIA Z C, ZHOU B, et al. Real-time mosaicing system and distance detection based on dynamic tree image sequence[J]. Scientia Silvae Sinicae, 2014, 50(5): 82-89.
[11] GILES D K, KLASSEN P, NIEDERHOLZER F J A, et al. “Smart” sprayer technology provides environmental and economic benefits in California orchards[J]. California Agriculture, 2011, 65(2): 85-89. DOI:10.3733/ca.v065n02p85.
[12] LLORENS J, GIL E, LLOP J, et al. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods[J]. Sensors, 2011, 11(2): 2177-2194. DOI:10.3390/s110202177.
[13] 翟长远, 赵春江, 王秀, 等. 树型喷洒靶标外形轮廓探测方法[J]. 农业工程学报, 2010, 26(12): 173-177.
ZHAI C Y, ZHAO C J, WANG X, et al. Probing method of tree spray target profile[J]. Transactions of the CSAE, 2010, 26(12): 173-177.
[14] PALLEJA T, TRESANCHEZ M, TEIXIDO M, et al. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner[J]. Agricultural and Forest Meteorology, 2010, 150(11): 1420-1427. DOI:10.1016/j.agrformet.2010.07.005.
[15] SOLANELLES F, ESCOLÀ A, PLANAS S, et al. An electronic control system for pesticide application proportional to the canopy width of tree crops[J]. Biosystems Engineering, 2006, 95(4): 473-481. DOI:10.1016/j.biosystemseng.2006.08.004.
[16] CHEN Y, ZHU H P, OZKAN H E. Development of LIDAR-guided sprayer to synchronize spray outputs with canopy structures[C]//2011 Louisville, Kentucky, August 7-August 10, 2011, St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. DOI:10.13031/2013.37206.
[17] CHEN Y, OZKAN H E, ZHU H, et al. Spray deposition inside tree canopies from a newly developed variable-rate air-assisted sprayer[J]. Transactions of the ASABE, 2013:1263-1272. DOI:10.13031/trans.56.9839.
[18] LIU H, ZHU H, CHEN Y.Development of digital flow control system for multi-channel variable-rate sprayers[J]. Transactions of the ASABE, 2014, 57(1): 273-281.
[19] ESCOLÀ A, ROSELL-POLO J R, PLANAS S, et al. Variable rate sprayer.Part 1-orchard prototype:design, implementation and validation[J]. Computers and Electronics in Agriculture, 2013, 95:122-135. DOI:10.1016/j.compag.2013.02.004.
[20] CAI J C, WANG X, SONG J, et al. Development of real-time laser-scanning system to detect tree canopy characteristics for variable-rate pesticide application[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(6): 155-163. DOI:10.25165/j.ijabe.20171006.3140.
[21] 胡培, 张文爱, 王秀, 等. 基于激光传感器检测树冠大小的实验平台设计[J]. 中国农机化学报, 2015, 36(5): 227-230. DOI:10.13733/j.jcam.issn.2095-5553.2015.05.055.
HU P, ZHANG W A, WANG X, et al. Experimental platform design for detecting tree canopy volume based on laser scanning sensor[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(5): 227-230.
[22] 李龙龙, 何雄奎, 宋坚利, 等. 基于变量喷雾的果园自动仿形喷雾机的设计与试验[J]. 农业工程学报, 2017, 33(1): 70-76. DOI:10.11975/j.issn.1002-6819.2017.01.009.
LI L L, HE X K, SONG J L, et al. Design and experiment of automatic profiling orchard sprayer based on variable air volume and flow rate[J]. Transactions of the CSAE, 2017, 33(1): 70-76.
[23] 刘慧, 夏伟, 沈跃, 等. 基于实时传感器的精密变量喷雾发展概况[J]. 中国农机化学报, 2016, 37(3): 238-244, 260. DOI:10.13733/j.jcam.issn.2095-5553.2016.03.052.
LIU H, XIA W, SHEN Y, et al. Development overview of precision variable spraying based on real-time sensor technology[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(3): 238-244, 260.
[24] GILES D K, COMINO J A. Droplet size and spray pattern characteristics of an electronic flow controller for spray nozzles[J]. Journal of Agricultural Engineering Research, 1990, 47:249-267. DOI:10.1016/0021-8634(90)80045-V.
[25] LIU H, ZHU H P, CHEN Y, et al. An electronic flow control system for a variable-rate tree sprayer[J]. Transactions of the ASABE, 2012, 3:1124-1134.
[26] 蒋焕煜, 周鸣川, 童俊华, 等. 基于卡尔曼滤波的PWM变量喷雾控制研究[J]. 农业机械学报, 2014, 45(10): 60-65. DOI:10.6041/j.issn.1000-1298.2014.10.010.
JIANG H Y, ZHOU M C, TONG J H, et al. PWM variable spray control based on Kalman filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 60-65.
[27] 邹伟, 王秀, 宋健, 等. 喷头流量控制试验台的设计与试验[J]. 中国农机化学报, 2016, 37(10): 61-65. DOI:10.13733/j.jcam.issn.2095-5553.2016.10.015.
ZOU W, WANG X, SONG J, et al. Design and experiment of a test bench for nozzle flow controlling[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 61-65.
[28] YANG C. A variable rate applicator for controlling rates of two liquid fertilizers[J]. Applied Engineering in Agriculture, 2001, 17(3): 409-417. DOI:10.13031/2013.6203.
[29] JEON H Y, ZHU H. Development of a variable-rate sprayer for nursery liner applications[J]. Transactions of the ASABE, 2012, 55(1): 303-312. DOI:10.13031/2013.41240.
[30] CHEN Y, ZHU H, OZKAN H E. Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures[J]. Transactions of the ASABE, 2012, 55(3): 773-781. DOI:10.13031/2013.41509.
[31] SHEN Y, ZHU H, LIU H, et al. Delay times of a LiDAR-guided precision sprayer control system[C]∥ASABE Annual International Meeting, Kansas City, Missouri, 2013:1741-1749. DOI:10.13031/aim.20131594649.

备注/Memo

备注/Memo:
投稿日期:2018-07-16 修回日期:2019-08-20
基金项目:国家林业局“948”项目(2015-4-56); 国家自然科学基金(61473156); 江苏省产学研联合创新资金-前瞻性联合研究项目(BY2014006-02); 江苏省基础研究计划青年基金项目(BK20170930)。
作者简介:束义平,男,研究方向为测控技术与智能系统。通信作者:周宏平,男,教授。E-mail:hpzhou@njfu.edu.cn
更新日期/Last Update: 2019-12-10