[1]林欢,许林云*,宣言,等.基于有限元的多级Y型银杏树模态分析与试验[J].林业工程学报,2020,5(01):148-155.[doi:10.13360/j.issn.2096-1359.201903032]
 LIN Huan,XU Linyun*,XUAN Yan,et al.Modal analysis and experimental study of the multistage Y-type ginkgo tree using the finite element method[J].Journal of Forestry Engineering,2020,5(01):148-155.[doi:10.13360/j.issn.2096-1359.201903032]
点击复制

基于有限元的多级Y型银杏树模态分析与试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
148-155
栏目:
森林工程与土建交通
出版日期:
2020-01-07

文章信息/Info

Title:
Modal analysis and experimental study of the multistage Y-type ginkgo tree using the finite element method
文章编号:
2096-1359(2020)01-0148-08
作者:
林欢1许林云2*宣言2周杰2刘冠华2陈青2
1.常州信息职业技术学院智能装备学院,江苏 常州 213164; 2.南京林业大学机械电子工程学院,南京 210037
Author(s):
LIN Huan1 XU Linyun2* XUAN Yan2 ZHOU Jie2 LIU Guanhua2 CHEN Qing2
1. Department of Intelligent Equipment, Changzhou College of Information Technology, Changzhou 213164, Jiangsu, China; 2. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
模态频率 有限元分析 激光扫描 三维重建 银杏树 林果采收
Keywords:
modal frequency finite element analysis laser scanning 3D reconstruction ginkgo tree harvest fruits
分类号:
S225.93
DOI:
10.13360/j.issn.2096-1359.201903032
文献标志码:
A
摘要:
机械振动采收是林果采收目前最有效的方式,研究林果树的固有动力学特性能够为果树在振动采收过程中激振器激振参数的选择提供依据。利用移动二维激光扫描技术获取多级Y型银杏树的点云数据,通过点云数据的处理重建树木的三维模型并采用Creo进行实体化处理,使用ANSYS对银杏树进行有限元分析并与测试结果进行对比验证。结果表明:主干和分枝之间存在一定的运动独立性,随着侧枝的分级细化会出现除主干谐振频率点以外更多的谐振频率。在有限元分析条件下银杏树的各阶谐振频率均成对出现,在同一阶模态中,仅有一个或几个树枝能够同时出现显著的振动现象,并且最大变形位置均出现在树枝末梢,以某个特定频率对银杏树进行激振并不能引起所有树枝的振动。有限元分析与试验测试结果之间的最大相对误差在低于15 Hz的低频区和高于15 Hz的高频区分别为10.40%和6.75%,有限元方法可以有效地分析果树的动力学特性。
Abstract:
China is the world's leading producer of fruits. Due to various shapes and sizes of fruits, the harvesting of fruit is time-consuming and laborious. At the same time, the harvesting season is heavy-duty, the harvesting time is relatively concentrated, and the labor cost is high. Mechanical vibration harvesting is the most effective method to harvest fruits. The principle of the vibration harvesting is to stimulate the fruit tree by a certain form of vibration mechanism, so that the fruits are separated from the branch. The investigation of the inherent dynamics of forest fruit trees could provide the basis for the selection of excitation parameters during the vibration harvesting. In this paper, the point cloud data of the multistage Y-shaped ginkgo tree was obtained by the moving two-dimensional laser scanning technology. The three-dimensional model of tree was reconstructed by the point cloud data processing and was materialized by Creo. The finite element analysis of ginkgo tree was carried out by ANSYS and compared with the test results. The results showed that there was a certain degree of motion independence between the trunk and the branches. With the grading and thinning of the side branches, besides the main resonance frequency points, more resonance frequencies appeared. Under the condition of finite element analysis, all the resonant frequencies of the ginkgo tree appeared in pairs. In the same mode, only one or several branches could simultaneously achieve significant vibration phenomena. And the maximum deformation position appeared at the tip of branches. When the ginkgo tree was excited at a specific frequency, the vibration of all branches couldn't be simultaneously stimulated. The maximum relative error between the results of the finite element analysis and the test results was 10.40% and 6.75%, respectively, at the low frequency region below 15 Hz and high frequency region above 15 Hz. The method of finite element could be used to effectively analyze the dynamic characteristics of fruit trees.

参考文献/References:

[1] MATEEV L M, KOSTADINOV G D. Probabilistic model of fruit removal during vibratory morello harvesting[J]. Biosystems Engineering, 2004, 87(4): 425-435. DOI:10.1016/j.biosystemseng.2004.01.006.
[2] 散鋆龙, 杨会民, 王学农, 等. 振动方式和频率对杏树振动采收响应的影响[J]. 农业工程学报, 2018, 34(8): 10-17. DOI:10.11975/j.issn.1002-6819.2018.08.002.
SAN Y L, YANG H M, WANG X N, et al. Effects of vibration mode and frequency on vibration harvesting of apricot trees[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8): 10-17.
[3] CASTRO-GARCÍA S, BLANCO-ROLDÁN G L, GIL-RIBES J A, et al. Dynamic analysis of olive trees in intensive orchards under forced vibration[J]. Trees, 2008, 22(6): 795-802. DOI:10.1007/s00468-008-0240-9.
[4] 陶嗣巍, 赵东. 根土相互作用关系对树干振动特性的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 77-81. DOI:10.3969/j.issn.1000-2006.2013.06.016.
TAO S W, ZHAO D. Effects of root-soil interaction on trunk vibration characteristics[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(6): 77-81.
[5] 鲁飞, 王春耀, 罗建清, 等. 海棠振动采收试验[J]. 江苏农业科学, 2017, 45(2): 207-210. DOI:10.15889/j.issn.1002-1302.2017.02.060.
LU F, WANG C Y, LUO J Q, et al. Experimental study on vibration picking of plum-leaf crab [J]. Jiangsu Agricultural Sciences, 2017, 45(2): 207-210.
[6] 汤孟平. 森林空间经营理论与实践[M]. 北京: 中国林业出版社, 2007.
TANG M P. The theory and practice of forest spatial management[M]. Beijing: China Forestry Publishing House, 2007.
[7] 林定, 陈崇成, 唐丽玉, 等. 基于参数曲线及其所围面积的三维树木建模[J]. 福州大学学报(自然科学版), 2011, 39(3): 367-374. DOI:CNKI:35-1117/N.20110526.1129.006.
LIN D, CHEN C C, TANG L Y, et al. 3D tree modeling based on the parametric curve and its integral[J]. Journal of Fuzhou University(Natural Science Edition), 2011, 39(3): 367-374.
[8] 唐丽玉, 张浩, 黄洪宇, 等. 基于点云数据的树木三维重建方法改进[J]. 农业机械学报, 2017, 48(2): 186-194. DOI:10.6041 /j.issn.1000-1298.2017.02.025.
TANG L Y, ZHANG H, HUANG H Y, et al. Improved method for 3D reconstruction of tree model based on point cloud data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 186-194.
[9] 黄洪宇, 陈崇成, 邹杰, 等. 基于地面激光雷达点云数据的单木三维建模综述[J]. 林业科学, 2013, 49(4): 123-130. DOI:10.11707/j.1001-7488.20130418.
HUANG H Y, CHEN C C, ZOU J, et al. Tree geometrical 3D modeling from terrestrial laser scanned point clouds:a review[J]. Scientia Silvae Sinicae, 2013, 49(4): 123-130.
[10] 梁建平, 李昌珠, 肖志红, 等. 基于ANSYS的小林果实采收机振动模态分析[J]. 农机化研究, 2014, 36(10): 25-28. DOI:10.13427/j.cnki.njyi.2014.10.006.
LIANG J P, LI C Z, XIAO Z H, et al. Vibration modal analysis of small forest fruit picking device based on ANSYS[J]. Journal of Agricultural Mechanization Research, 2014, 36(10): 25-28.
[11] RODRIGUEZ M, DE LANGRE E, MOULIA B. A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization[J]. American Journal of Botany, 2008, 95(12): 1523-1537. DOI:10.3732/ajb.0800161.
[12] RODRIGUEZ M, PLOQUIN S, MOULIA B, et al. The multimodal dynamics of a walnut tree:experiments and models[J]. Journal of Applied Mechanics, 2012, 79(4): 044505. DOI:10.1115/1.4005553.
[13] BENTAHER H, HADDAR M, FAKHFAKH T, et al. Finite elements modeling of olive tree mechanical harvesting using different shakers[J]. Trees, 2013, 27(6): 1537-1545. DOI:10.1007/s00468-013-0902-0.
[14] 仇高贺. 基于有限元的山核桃树振动采摘研究[J]. 安徽农业科学, 2016, 44(5): 312-315. DOI:10.13989/j.cnki.0517-6611.2016.05.105.
QIU G H. Study on hickory vibration picking based on FEA[J]. Journal of Anhui Agricultural Sciences, 2016, 44(5): 312-315.
[15] 吕梦璐, 王春耀, 罗建清, 等. 基于ANSYS对振动果树枝干“Y”型响应的研究[J]. 农机化研究, 2017, 39(2): 37-41. DOI:10.13427/j.cnki.njyi.2017.02.008.
LYU M L, WANG C Y, LUO J Q, et al. The finite element analysis of the vibration of fruit trees based on ANSYS workbench[J]. Journal of Agricultural Mechanization Research, 2017, 39(2): 37-41.
[16] 王冬, 陈度, 王书茂, 等. 基于有限元方法的整形果树振动收获机理分析[J]. 农业工程学报, 2017, 33(S1): 56-62. DOI:10.11975/j.issn.1002-6819.2017.z1.009.
WANG D, CHEN D, WANG S M, et al. Analysis on vibratory harvesting mechanism for trained fruit tree based on finite element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 56-62.
[17] 郑甲红, 毛俊超, 韩冰冰. 振动式采摘机振动夹持位置的仿真研究[J]. 陕西科技大学学报(自然科学版), 2014, 32(1): 142-147. DOI:10.3969/j.issn.1000-5811.2014.01.031.
ZHENG J H, MAO J C, HAN B B. The vibrating picking machine vibration clamping position simulation research[J]. Journal of Shaanxi University of Science & Technology(Natural Science Edition), 2014, 32(1): 142-147.
[18] 高洪岐. 果树伴随生长整形修剪法[M]. 大连: 大连出版社, 2010.
GAO H Q. Grown plastic pruning with fruit trees[M]. Dalian: Dalian Publishing House, 2010.
[19] 吕梦璐, 王春耀, 罗建清, 等. 基于高速摄像技术落果运动规律的研究[J]. 农机化研究, 2015, 37(9): 190-193. DOI:10.13427/j.cnki.njyi.2015.09.043.
LYU M L, WANG C Y, LUO J Q, et al. Researching the movement of fruit dropping based on high-speed camera[J]. Journal of Agricultural Mechanization Research, 2015, 37(9): 190-193.
[20] 王业成, 陈海涛, 林青. 黑加仑采收装置参数的优化[J]. 农业工程学报, 2009, 25(3): 79-83.
WANG Y C, CHEN H T, LIN Q. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(3): 79-83.
[21] 林欢, 许林云, 宣言, 等. 林果振动加速度响应振型试验[J]. 林业工程学报, 2016, 1(1): 100-104. DOI:10.13360/j.issn.2096-1359.2016.01.019.
LIN H, XU L Y, XUAN Y, et al. Experimental research on the vibration mode of fruit vibration acceleration response[J]. Journal of Forestry Engineering, 2016, 1(1): 100-104.
[22] 王国利, 高婷, 郭明. 相位式地面三维激光扫描点云的噪声滤除[J]. 测绘通报, 2019(S1): 190-194. DOI:10.13474/j.cnki.11-2246.2019.0544.
WANG G L, GAO T, GUO M. Noise elimination of point cloud in phase-based TLS point cloud[J]. Bulletin of Surveying and Mapping, 2019(S1): 190-194.
[23] SELLIER D, FOURCAUD T, LAC P. A finite element model for investigating effects of aerial architecture on tree oscillations[J]. Tree Physiology, 2006, 26(6): 799-806. DOI:10.1093/treephys/26.6.799.
[24] 贺磊盈, 武传宇, 杜小强. 基于双轮廓同步跟踪的果树枝干提取及三维重建[J]. 农业工程学报, 2014, 30(7): 182-189. DOI:10.3969/j.issn.1002-6819.2014.07.021.
HE L Y, WU C Y, DU X Q. Fruit tree extraction based on simultaneous tracking of two edges for 3D reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 182-189.
[25] 林欢, 许林云, 周宏平, 等. 机械采收作业中银杏树频谱特性与振动响应关系研究[J]. 农业工程学报, 2017, 33(17): 51-57. DOI:10.11975/j.issn.1002-6819.2017.17.007.
LIN H, XU L Y, ZHOU H P, et al. Relationship between frequency spectrum characteristics and vibration responses of Ginkgo biloba trees during mechanical harvesting operation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 51-57.

相似文献/References:

[1]王慧,谭望,马岩*.自走式割灌机翻转机构的设计与分析[J].林业工程学报,2016,1(02):101.[doi:10.13360/j.issn.2096-1359.2016.02.018]
 WANG Hui,TAN Wang,MA Yan*.Flip mechanism design and analysis of self-propelled brush breaker[J].Journal of Forestry Engineering,2016,1(01):101.[doi:10.13360/j.issn.2096-1359.2016.02.018]
[2]张苏俊,李晨,肖忠平,等.重组竹工字梁抗弯特性研究及模拟分析[J].林业工程学报,2017,2(01):125.[doi:10.13360/j.issn.2096-1359.2017.01.022]
 ZHANG Sujun,LI Chen,XIAO Zhongping,et al.Bending strength and loading simulation analysis of bamboo scrimber I-shaped beam[J].Journal of Forestry Engineering,2017,2(01):125.[doi:10.13360/j.issn.2096-1359.2017.01.022]
[3]周方思,李立君*,欧阳益斌.基于ANSYS的除草机车架轻量化研究[J].林业工程学报,2017,2(06):103.[doi:10.13360/j.issn.2096-1359.2017.06.018]
 ZHOU Fangsi,LI Lijun*,OUYANG Yibin.Lightweight research of mower frame based on ANSYS[J].Journal of Forestry Engineering,2017,2(01):103.[doi:10.13360/j.issn.2096-1359.2017.06.018]
[4]马岩,宋明亮,杨春梅,等.门窗材双端刨铣自动换刀加工中心的结构设计[J].林业工程学报,2019,4(01):108.[doi:10.13360/j.issn.2096-1359.2019.01.016]
 MA Yan,SONG Mingliang,YANG Chunmei,et al.Design and analysis of double-end planing and milling machine with automatic tool-exchange function for processing doors and windows[J].Journal of Forestry Engineering,2019,4(01):108.[doi:10.13360/j.issn.2096-1359.2019.01.016]
[5]李威,高颖,孟鑫淼*,等.角钢-集成材L形组合柱的受压性能研究[J].林业工程学报,2020,5(01):53.[doi:10.13360/j.issn.2096-1359.201903025]
 LI Wei,GAO Ying,MENG Xinmiao*,et al.Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J].Journal of Forestry Engineering,2020,5(01):53.[doi:10.13360/j.issn.2096-1359.201903025]
[6]奚茜,杨洋,张仲凤*.不同结点形式下黄荆木重组材T型构件的抗拔力与有限元分析[J].林业工程学报,2020,5(01):182.[doi:10.13360/j.issn.2096-1359.201804018]
 XI Xi,YANG Yang,ZHANG Zhongfeng*.Pull-out force and finite element analysis of T-type components of Vitex negundo L. scrimber with different node forms[J].Journal of Forestry Engineering,2020,5(01):182.[doi:10.13360/j.issn.2096-1359.201804018]

备注/Memo

备注/Memo:
收稿日期:2019-03-27 修回日期:2019-05-24
基金项目:江苏省高等学校自然科学研究项目资助(19KJB210007); 常州市应用基础研究计划(CJ20190023); 常州信息职业技术学院科研课题青年基金资助(CXZK201804Q); 常州信息职业技术学院科研平台资助(PYPT201804G); 常州高技术重点实验室项目(CM20183004)。
作者简介:林欢,女,研究方向为现代机械设计理论与方法。通信作者:许林云,女,教授。E-mail: lyxu@njfu.co
更新日期/Last Update: 2019-12-10