[1]李强,张卓宇,罗桑,等.基于CT扫描技术的沥青混合料虚拟劈裂试验[J].林业工程学报,2020,5(01):164-170.[doi:10.13360/j.issn.2096-1359.201903037]
 LI Qiang,ZHANG Zhuoyu,LUO Sang,et al.Virtual splitting test of asphalt mixture based on computer tomography scanning technology[J].Journal of Forestry Engineering,2020,5(01):164-170.[doi:10.13360/j.issn.2096-1359.201903037]
点击复制

基于CT扫描技术的沥青混合料虚拟劈裂试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
164-170
栏目:
森林工程与土建交通
出版日期:
2020-01-07

文章信息/Info

Title:
Virtual splitting test of asphalt mixture based on computer tomography scanning technology
文章编号:
2096-1359(2020)01-0164-07
作者:
李强12张卓宇1罗桑3关永胜4
1.南京林业大学土木工程学院,南京 210037; 2.机电产品包装生物质材料国家地方联合工程研究中心,南京 210037; 3.东南大学交通学院,南京 211189; 4.江苏中路交通科学技术有限公司,南京 211800
Author(s):
LI Qiang12 ZHANG Zhuoyu1 LUO Sang3 GUAN Yongsheng4
Engineering Research Center of Electromechanical Product Packaging, Nanjing 210037, China; 3. School of Transportation, Southeast University, Nanjing 211189, China; 4. Jiangsu Sino Road Transportation Science and Technology Co. Ltd., Nanjing 211800, China
关键词:
道路工程 沥青混合料 抗拉性能 有限元法 数字图像处理 CT扫描技术
Keywords:
pavement engineering asphalt mixture mechanical responses finite element method digital image processing CT scanning technology
分类号:
U416.217
DOI:
10.13360/j.issn.2096-1359.201903037
文献标志码:
A
摘要:
为了研究不同类型沥青混合料的抗拉性能,采用Burgers模型表征沥青砂浆的黏弹性能,通过Computer Tomography(CT)扫描技术和有限元方法建立了基于沥青混合料细观结构特征的虚拟劈裂试验模型,并通过室内实测结果进行模型准确性验证。以劈裂劲度模量、拉应力最大值、拉应力平均值、拉应力方差以及应力集中性参数作为评价指标,分析了各细观结构因素对不同类型沥青混合料抗拉性能的影响。结果表明:分别从定性和定量方面证实了建立的沥青混合料虚拟劈裂试验模型具有较好的准确性; 与AC-20混合料相比,AC-13混合料表现出更优的抗裂性能和应力分散能力; 级配和集料分布特征均对沥青混合料抗裂性能造成影响; 采用橡胶沥青或者SBS改性沥青可以显著增强沥青砂浆抗变形能力和沥青混合料抗拉性能; 空隙的存在导致在一定程度上降低了沥青混合料的抗裂性能。因此,在进行虚拟仿真分析时必须准确地表征沥青混合料非均质的细观结构特征,才能有效地反映其宏观力学特性。
Abstract:
The virtual test method can be used to discuss the mechanical responses of asphalt mixtures under the loading. The Burgers model is used to characterize the viscoelastic properties of asphalt mortar for investigating the tensile resistance of different asphalt mixtures. The computer tomography scanning technology and finite element method are used to develop the virtual splitting test model based on the microstructural characteristics. The model accuracy is verified by the measured results in the laboratory. Effects of microstructural characteristics on the tensile resistance of asphalt mixtures are analyzed by the indicators of splitting stiffness, maximum tensile stress, average tensile stress, variance of tensile stress, and stress concentration parameter. It is found that the developed model has a good accuracy in the qualitative and quantitative aspects. The relative errors are less than 10% for all cases. AC-13 mixtures show better cracking resistance and stress dispersion capacity than AC-20 ones. Aggregate gradations and distribution characteristics have effects on the cracking resistance of asphalt mixture. The geometric profile, spatial location, and combination form of aggregate particles play a significant role in the interlocking effect of aggregate structures. The difference in the aggregate distribution characteristics results in different cracking resistance for asphalt mixtures even under the same condition of aggregate gradation. Using crumb rubber and SBS modified asphalt binders can improve the deformation resistance of asphalt mortars and tensile performance of asphalt mixtures, respectively. The existing air voids can cause the higher tensile stress and the greater dispersion degree of tensile stress distribution in asphalt mixtures. The stress concentration phenomenon appears easily. It can lower the mixture cracking resistance to a certain extent. Therefore, the heterogeneous microstructural characteristics of asphalt mixtures must be captured in the virtual simulation analysis since aggregate gradations, aggregate distribution characteristics, asphalt binder types, and air void have significant effects on the mechanical performance of asphalt mixtures. It can accurately reflect the macroscopic mechanical performance.

参考文献/References:

[1] 基敏雪, 王宏畅. 基于数字图像处理技术的多孔沥青混合料细观空隙特征规律[J]. 中外公路, 2018, 38(5): 257-261.
JI M X, WANG H C. Microscopic void characteristics of porous asphalt mixture based on digital image processing technology[J]. Journal of China & Foreign Highway, 2018, 38(5): 257-261.
[2] 葛辉, 王宏畅. 动荷载作用下沥青路面基层底裂缝扩展研究[J]. 林业工程学报, 2016, 1(4): 141-148. DOI:10.13360/j.issn.2096-1359.2016.04.024.
GE H, WANG H C. Study on crack propagation at bottom of base course in asphalt pavement under dynamic vehicle loads[J]. Journal of Forestry Engineering, 2016, 1(4): 141-148.
[3] ISLAM M R, HOSSAIN M I, TAREFDER R A. A study of asphalt aging using indirect tensile strength test[J]. Construction and Building Materials, 2015, 95:218-223. DOI:10.1016/j.conbuildmat.2015.07.159.
[4] WEI X X, CHAU K T. Three dimensional analytical solution for finite circular cylinders subjected to indirect tensile test[J]. International Journal of Solids and Structures, 2013, 50(14/15): 2395-2406. DOI:10.1016/j.ijsolstr.2013.03.026.
[5] DAI Q L. Two- and three-dimensional micromechanical viscoelastic finite element modeling of stone-based materials with X-ray computed tomography images[J]. Construction and Building Materials, 2011, 25(2): 1102-1114. DOI:10.1016/j.conbuildmat.2010.06.066.
[6] 李沛洪, 任贵政, 巫伟军. 非均质沥青混合料劈裂试验应力分布规律研究[J]. 公路, 2017, 62(6): 247-251.
LI P H, REN G Z, WU W J. Law of stress distribution in fracturing test of heterogeneous asphalt mixture [J]. Highway, 2017, 62(6): 247-251.
[7] 杨继康, 王晓川. 沥青混合料劈裂试验的细观模型验证与分析[J]. 中外公路, 2015, 35(2): 230-233. DOI:10.14048/j.issn.1671-2579.2015.02.054.
YANG J K, WANG X C. Microscopic model verification and analysis of asphalt mixture splitting test [J]. Journal of China & Foreign Highway, 2015, 35(2): 230-233.
[8] 张帅. 基于能量耗散理论的温拌再生沥青砂浆疲劳开裂行为研究[D]. 南京: 南京林业大学, 2016.
ZHANG S. Research on fatigue cracking behavior of warm-recycling asphalt mortar based on dissipated energy theory [D]. Nanjing: Nanjing Forestry University, 2016.
[9] 李晓军, 江丽华. 沥青砂浆粘弹特性试验与模型参数分析[J]. 武汉理工大学学报, 2011, 33(3): 82-86. DOI:10.3963/j.issn.1671-4431.2011.03.018.
LI X J, JIANG L H. Test and model parameter analysis of asphaltic sand with viscoelasticity[J]. Journal of Wuhan University of Technology, 2011, 33(3): 82-86.
[10] 李国芬, 王宏畅, 王勇, 等. 基于修正Burgers模型的钢桥面铺装车辙有限元分析[J]. 林业工程学报, 2016, 1(5): 120-125. DOI:10.13360/j.issn.2096-1359.2016.05.021.
LI G F, WANG H C, WANG Y, et al. Finite element analysis of steel bridge deck pavement rut based on modified Burgers model[J]. Journal of Forestry Engineering, 2016, 1(5): 120-125.
[11] WAN C, ZHANG X N, WANG L B, et al. Three-dimensional micromechanical finite element analysis on gauge length dependency of the dynamic modulus of asphalt mixtures[J]. Road Materials and Pavement Design, 2012, 13(4): 769-783. DOI:10.1080/14680629.2012.732194.
[12] 陈明, 李霖, 赵新惠, 等. 沥青混合料虚拟单轴蠕变试验方法[J]. 公路交通科技, 2015, 32(5): 13-18.
CHEN M, LI L, ZHAO X H, et al. Virtual uniaxial creep testing method for asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(5): 13-18.
[13] 陈斯宁, 赵俊明, 陈红斌. 基于沥青混合料细观结构的劈裂试验数值模拟[J]. 现代交通技术, 2016, 13(4): 11-15.
CHEN S N, ZHAO J M, CHEN H B. Numerical simulation of split test based on microstructure of asphalt mixture[J]. Modern Transportation Technology, 2016, 13(4): 11-15.
[14] ZHANG D, HOU S G, BIAN J, et al. Investigation of the micro-cracking behavior of asphalt mixtures in the indirect tensile test[J]. Engineering Fracture Mechanics, 2016, 163:416-425. DOI:10.1016/j.engfracmech.2016.05.020.
[15] 王江洋, 钱振东. 基于细观结构有限元模型的环氧沥青混合料间接拉伸试验研究[J]. 东南大学学报(英文版), 2011, 27(1): 65-69. DOI:10.3969/j.issn.1003-7985.2011.01.014.
WANG J Y, QIAN Z D. Indirect tension test of epoxy asphalt mixture using microstructural finite-element model [J]. Journal of Southest University(English Edition), 2011, 27(1):65-69.
[16] 裴军军. SBS改性沥青混合料低温抗裂性能试验研究[D]. 兰州: 兰州理工大学, 2013.
PEI J J. The low temperature crack resistance of SBS modified asphalt mixture by test[D]. Lanzhou: Lanzhou University of Technology, 2013.

相似文献/References:

[1]葛辉,王宏畅*.动荷载作用下沥青路面基层底裂缝扩展研究[J].林业工程学报,2016,1(04):141.[doi:10.13360/j.issn.2096-1359.2016.04.024]
 GE Hui,WANG Hongchang*.Study on crack propagation at bottom of base course in asphalt pavement under dynamic vehicle loads[J].Journal of Forestry Engineering,2016,1(01):141.[doi:10.13360/j.issn.2096-1359.2016.04.024]

备注/Memo

备注/Memo:
收稿日期:2019-03-30 修回日期:2019-06-24
基金项目:江苏省基础研究计划(自然科学基金)资助项目(BK20181404); 江苏高校“青蓝工程”资助项目(苏教师(2016)15号); 南京林业大学“青年骨干教师培养对象”资助项目(2017年)。
作者简介:李强,男,副教授,研究方向为路面结构与材料。E-mail:liqiang2526@njfu.edu.cn
更新日期/Last Update: 2019-12-10