[1]邵光辉,陈相宇,崔小相.微生物固化垃圾焚烧灰渣强度试验[J].林业工程学报,2020,5(01):171-177.[doi:10.13360/j.issn.2096-1359.201902021]
 SHAO Guanghui,CHEN Xiangyu,CUI Xiaoxiang.Strength properties of biocemented municipal solid waste incineration ash and slag[J].Journal of Forestry Engineering,2020,5(01):171-177.[doi:10.13360/j.issn.2096-1359.201902021]
点击复制

微生物固化垃圾焚烧灰渣强度试验()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年01期
页码:
171-177
栏目:
森林工程与土建交通
出版日期:
2020-01-07

文章信息/Info

Title:
Strength properties of biocemented municipal solid waste incineration ash and slag
文章编号:
2096-1359(2020)01-0171-07
作者:
邵光辉1陈相宇1崔小相2
1.南京林业大学土木工程学院,南京 210037; 2.南京市建筑安装管理处,南京 210016
Author(s):
SHAO Guanghui1 CHEN Xiangyu1 CUI Xiaoxiang2
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Nanjing Building Installation Management Office, Nanjing 210016, China
关键词:
垃圾焚烧灰渣 底渣 飞灰 微生物固化 垃圾处理
Keywords:
waste incineration ash bottom slag fly ash microbial solidification refuse treatment
分类号:
X773
DOI:
10.13360/j.issn.2096-1359.201902021
文献标志码:
A
摘要:
垃圾焚烧灰渣(底渣和飞灰)是生活垃圾焚烧发电后的残余固体废弃物,对其进行固化处理和资源化利用是减少该类固体废弃物占用填埋场资源的重要途径。笔者利用微生物诱导碳酸钙沉积固化细粒底渣和飞灰,通过微生物注浆试验研究菌液浓度、胶结液浓度和处理轮数对垃圾焚烧灰渣胶结CaCO3生成量及强度的影响。结果表明,底渣和飞灰都具有一定的水硬性,其水硬固化体的无侧限抗压强度分别为174.46和381.73 kPa。底渣经微生物注浆处理2~10轮后的无侧限抗压强度较水硬固化体分别提高了35.8%~120.0%,飞灰经微生物注浆处理2~10轮后的无侧限抗压强度较水硬固化体则分别提高了9.5%~48.8%。随胶结溶液浓度的增大,微生物固化底渣和飞灰中的CaCO3生成量和无侧限抗压强度提高,但试样的可注性降低。稀释比1:50、菌液比1:100的菌液更利于底渣和飞灰胶结强度的提高,未稀释菌液固化效果差。与微生物固化天然砂土和粉土相比,微生物固化底渣和飞灰的无侧限抗压强度随CaCO3含量增加的增幅较缓,微生物固化垃圾焚烧灰渣的胶结效率略低。试验结果证明,微生物固化能有效改善垃圾焚烧灰渣强度的特性,微生物诱导碳酸钙沉积技术在垃圾焚烧灰渣固化处理方面具有一定的发展潜力。
Abstract:
Waste incineration ash(bottom slag and fly ash)is the residual solid waste after power generation. Solidification treatment and resource utilization are important methods to reduce the occupation of such solid waste landfill resources. For this purpose, in this paper, microbial-induced calcium carbonate precipitation was used to solidify fine-grained bottom slag and fly ash in waste incineration ash. The effects of the concentration of bacterial suspension, cementing solution and treatment rounds on the strength and CaCO3 content of cemented waste incineration ash were investigated based on a microbial grouting test. The bottom slag and fly ash in the waste incineration ash presented hydraulicity. The unconfined compressive strength of hydraulic-cemented bottom slag and fly ash was 174.46 kPa and 381.73 kPa, respectively. After 2 to 10 rounds of microbial grouting treatment, the unconfined compressive strength of the bottom slag increased to 120.0%, counting a 35.8% increase compared with its water-rigid cementation strength. Similarly, the unconfined compressive strength of fly ash increased to 48.8%, counting a 9.5% increase compared with its water-rigid cementation strength. With the increase of the concentration of cementing solution, the amount of CaCO3 in microorganism solidified bottom slag and fly ash and the unconfined compressive strength increased, but the injectivity of the sample decreased. The dilution ratio of 1:50 bacterial suspension was better than 1:100 bacterial suspension for the improvement of cement strength of bottom slag and fly ash. However, it was difficult to achieve cementation by injecting undiluted bacteria suspension. Finally, the results indicated that the unconfined compressive strength of fine-grained bottom slag and fly ash in MSW incineration ash increased with the increase of CaCO3 content, but their strength growth tended to ease with the increase of CaCO3 content. Compared with the natural sand and silt cemented by the microbial induced calcium precipitation, the unconfined compressive strength of microbial cemented bottom slag and fly ash increased slowly with the increase of CaCO3 content, and the cementing efficiency of microbial cemented waste incineration ash was slightly lower. The results showed that the microorganism solidified waste incineration ash was effective in improving its strength. The microbial-induced calcium carbonate precipitation technology has a development potential in the solidification treatment of waste incineration ash residues.

参考文献/References:

[1] 钱帅, 林健, 唐保山. 用熔融法固化生活垃圾焚烧灰渣并制备泡沫玻璃[J]. 硅酸盐学报, 2014, 42(1): 108-112. DOI:10.7521/j.issn.0454-5648.2014.01.19.
QIAN S, LIN J, TANG B S. Preparation of glass foams from vitrified municipal solid waste incinerator ash[J]. Journal of the Chinese Ceramic Society, 2014, 42(1): 108-112.
[2] 李晓勇, 朱建斌, 胡雨燕. 焚烧灰渣物理化学性质的研究进展[J]. 上海应用技术学院学报, 2008, 8(2): 116-121. DOI:10.3969/j.issn.1671-7333.2008.02.010.
LI X Y, ZHU J B, HU Y Y. Research progress on physicochemical properties of incinerated ash[J]. Journal of Shanghai Institute of Applied Technology, 2008, 8(2): 116-121.
[3] 田志鹏, 田海燕, 张冰如. 城市生活垃圾焚烧飞灰物化性质及重金属污染特性[J]. 环境污染与防治, 2016, 38(9): 80-85. DOI:10.15985/j.cnki.1001-3865.2016.09.015.
TIAN Z P, TIAN H Y, ZHANG B R. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration[J]. Environmental Pollution and Control, 2016, 38(9): 80-85.
[4] 苏蓉. 生活垃圾焚烧飞灰的处理[J]. 广州化工, 2016, 44(24): 104-106. DOI:10.3969/j.issn.1001-9677.2016.24.036.
SU R. Treatment of fly ash from domestic waste incineration[J]. Guangzhou Chemical Industry, 2016, 44(24): 104-106.
[5] 郝玉, 徐宏勇, 柏舸, 等. 垃圾焚烧飞灰中Cd、Pb、Zn的螯合稳定与水泥固化处理[J]. 环境工程学报, 2018, 12(8): 2357-2362. DOI:10.12030/j.cjee.201803036.
HAO Y, XU H Y, BAI G, et al. Stabilization/solidification of Cd, Pb and Zn in municipal solid waste incineration(MSWI)fly ash with chelating agent and cement[J]. Chinese Journal of Environmental Engineering, 2018, 12(8): 2357-2362.
[6] 何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. DOI:10.11779/CJGE201604008.
HE J, CHU J, LIU H L, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653.
[7] 高炎旭. 微生物诱导碳酸盐沉淀(MICP)团聚化垃圾焚烧飞灰试验研究[D]. 杭州: 浙江理工大学, 2017.
GAO Y X. Microbial induced carbonate precipitation(MICP)agglomeration of fly ash from waste incineration[D]. Hangzhou: Zhejiang University of Technology, 2017.
[8] DEJONG J T, SOGA K, BANWART S A, et al. Soil engineering in vivo:harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions[J]. Journal of the Royal Society Interface, 2011, 8(54): 1-15. DOI:10.1098/rsif.2010.0270.
[9] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
[10] VAN PAASSEN L A. Biogrout ground improvement by microbial induced carbonate preci-pitation[D]. Delft Netherlands: Delft University of Technology, 2009.
[11] VAN PAASSEN L A, GHOSE R, VAN DER LINDE T J, et al. Quantifying biomediated ground improvement by ureolysis:large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. DOI:10.1061/(ASCE)GT.1943-5606.0000382.
[12] 李驰, 刘世慧, 周团结, 等. 微生物矿化风沙土强度及孔隙特性的试验研究[J]. 力学与实践, 2017, 39(2): 165-171, 184. DOI:10.6052/1000-0879-16-286.
LI C, LIU S H, ZHOU T J, et al. The strength and porosity properties of MICP-treated aeolin sandy soil[J]. Mechanics in Engineering, 2017, 39(2): 165-171, 184.
[13] 刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. DOI:10.11779/CJGE201801002.
LIU H L, XIAO P, XIAO Y, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45.
[14] SOON N W, LEE L M, KHUN T C, et al. Improvements in engineering properties of soils through microbial-induced calcite precipitation[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 718-728. DOI:10.1007/s12205-013-0149-8.
[15] 彭邦阳, 赵志峰. 表面入渗法诱导碳酸钙沉积加固海相粉土研究[J]. 林业工程学报, 2018, 3(5): 136-141. DOI:10.13360/j.issn.2096-1359.2018.05.021.
PENG B Y, ZHAO Z F. Improvement of marine silt by microbial induced calcite precipitation by surface percolation[J]. Journal of Forestry Engineering, 2018, 3(5): 136-141.
[16] MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate pre-cipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349. DOI:10.1111/j.1365-2672.2011.05065.x.
[17] 李沛豪, 屈文俊. 细菌诱导碳酸钙沉积修复混凝土裂缝[J]. 土木工程学报, 2010, 43(11): 64-70. DOI:10.15951/j.tmgcxb.2010.11.013.
LI P H, QU W J. Remediation of concrete cracks by bacterially-induced calcium carbonate deposition[J]. Journal of Civil Engineering, 2010, 43(11): 64-70.
[18] 邵光辉, 侯敏, 刘鹏. MICP固化粉土细菌的分布和固定规律研究[J]. 林业工程学报, 2019, 4(1): 128-134. DOI:10.13360/j.issn.2096-1359.2019.01.019.
SHAO G H, HOU M, LIU P. Distribution and fixation characteristics of microorganism in MICP treated silt column[J]. Journal of Forestry Engineering, 2019, 4(1): 128-134.
[19] HARKES P H, BOOSTER J L, VAN PAASSEN L A, et al. Microbial induced carbonate precipitation as ground improvement method-bacterial fixation and empirical correlation CaCO3 vs.strength[C]//Proceedings of 1st International Conference on Bio-Geo-Civil Engineering. Delft:[s.n.], 2008:37-44.
[20] CHU J, IVANOV V, NAEIMI M, et al. Optimization of calcium-based bioclogging and biocementation of sand[J]. Acta Geotechnica, 2014, 9(2): 277-285. DOI:10.1007/s11440-013-0278-8.
[21] QABANY A A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63(4): 331-339. DOI:10.1680/geot.SIP13.P.022.
[22] 薛双. 微生物注浆固化粉土空间均匀性与尺寸效应研究[D]. 南京: 南京林业大学, 2017.
XUE S. Study on spatial uniformity and size effect of silt solidified by microbial grouting[D]. Nanjing: Nanjing Forestry University, 2017.

备注/Memo

备注/Memo:
收稿日期:2019-02-21 修回日期:2019-05-30
基金项目: 国家自然科学基金(51578293)。
作者简介:邵光辉,男,教授,研究方向为环境岩土与微生物岩土工程。 E-mail: gh_shao@njfu.com.cn
更新日期/Last Update: 2019-12-10