[1]何盛,陈玉和,吴再兴,等.木竹材料细观渗流研究进展[J].林业工程学报,2020,5(02):12-19.[doi:10.13360/ j.issn.2096-1359.201906043]
 HE Sheng,CHEN Yuhe,WU Zaixing,et al.Research progress on wood/bamboo microscopic fluid transportation[J].Journal of Forestry Engineering,2020,5(02):12-19.[doi:10.13360/ j.issn.2096-1359.201906043]
点击复制

木竹材料细观渗流研究进展()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
12-19
栏目:
专论综述
出版日期:
2020-03-11

文章信息/Info

Title:
Research progress on wood/bamboo microscopic fluid transportation
文章编号:
2096-1359(2020)02-0012-08
作者:
何盛1陈玉和1吴再兴1胡玉安2*
1. 国家林业和草原局竹子研究开发中心,国家林业和草原局竹家居工程技术研究中心,浙江省竹子高效加工重点实验室,杭州 310012; 2. 江西省林业科学院,南昌 330032
Author(s):
HE Sheng1 CHEN Yuhe1 WU Zaixing1 HU Yu'an2*
1. China National Bamboo Research Center, Engineering Technology Research Center for Building and Decorating Materials of Bamboo, State Forestry Administration; Key Laboratory of Bamboo High Efficient Processing of Zhejiang Province, Hangzhou 310012, China; 2. Jiangxi Academy of Forestry, Nanchang 330032, China
关键词:
木材 竹材 细观渗流 孔隙结构 改善方法
Keywords:
wood bamboo microscopic fluid transportation porous structure improvement methods
分类号:
S781.9; S785
DOI:
10.13360/ j.issn.2096-1359.201906043
文献标志码:
A
摘要:
木竹材内部的流体渗透属于细观渗流范畴,解析木竹材料细观渗流规律对木竹材高效加工利用具有重要指导意义。目前对于木竹材流体渗透性方面的研究较多,但多集中在渗透性能的表征方面。从多孔构造解析角度,揭示木竹材细观渗流性能变化机理的研究相对较少。笔者从多孔材料结构表征分析角度出发,总结了木竹材料微观构造对应的多孔结构特征、孔径分布情况; 系统归纳了木竹材料多孔结构特征主要表征方法(直观分析法、间接测试法及分形维数法)的原理及适用范围,在此基础上解析流体在木竹材中的渗透路径和渗透规律,总结木竹材多孔特征与细观渗流之间的关系; 综述了可有效改善木竹材细观渗流特性的三类主要方法,即生物、物理及化学处理法,分析了当前木竹材细观渗流研究领域存在的主要问题; 并展望了木竹材料细观渗流研究发展方向,以期为木竹材的性能分析及高值化加工利用提供基础理论依据。
Abstract:
The fluid flow in wood or bamboo belongs to the research field of microscopic fluid transportation. As fluid flow relates closely with wood/bamboo properties, revealing the principle of microscopic fluid transportation in wood/bamboo material would be interesting and useful for wood/bamboo high value-added utilization. Previous studies in the field of wood/bamboo microscopic fluid transportation mainly focused on the characterization of fluid permeability represented by liquid uptake rate, liquid permeation depth, etc. It can not be used to uncover the mechanism of fluid transportation principles in both wood and bamboo materials. As the fluid flow correlated closely with the porous structure of wood and bamboo materials, it is therefore extremely important to characterize the porous structure to help analyze the principles of fluid flow in wood/bamboo materials. The present study summarized the research progress in porous features corresponding to the microstructure of wood and bamboo, and pore size distributions were also summarized based on previous studies. Different kinds of methods(mainly three categories: direct structure examination, indirect measurement and fractal dimension method)for pore structural parameters characterization were concluded. The direct structure examination methods were mainly base on images taken from microstructure examination. Through image processing, the information such as pore structure, pore size and the connections between pores can be obtained directly. The indirect measurement can realize the quantitative characterization of pore structure(pore diameter, pore size distribution, etc.), while the fractal dimension method was used to characterize the structural characteristic(irregularity, intersection and tortuosity)of pores in wood and bamboo materials. Principles and possible applied scope of these methods were presented. From the aspects of porous structure, fluid flow paths were analyzed when correlating the microscopic analysis results with the pore structure quantitative characterization results. Besides, various methods for enhancing the property of microscopic fluid transportation(biology, physical and chemical method)were also summarized. Problems, difficulties and future research focuses in the research field of microscopic fluid transportation of wood/bamboo were prospected. The present study can be a good supplement for the basic theoretical knowledge of wood/bamboo utilization. It could offer the solid theoretical foundation for developing high-performance wood/bamboo-based materials and realizing the high value-added utilization of wood/bamboo materials.

参考文献/References:

[1] KONG X Y, CHEN G Q, WU J B, et al. Stability of natural convection of power-law fluid and non-darcy flow in porous media[J]. Journal of Thermal Science, 2001, 10(1): 74-78. DOI:10.1007/s11630-001-0013-x.
[2] VINU A, MORI T, ARIGA K. New families of mesoporous materials[J]. Science and Technology of Advanced Materials, 2006, 7(8): 753-771. DOI:10.1016/j.stam.2006.10.007.
[3] GOH Y YAP S P, TONG T Y. Bamboo: the emerging renewable material for sustainable construction[J]. Reference Module in Materials Science and Materials Engineering, 2019. DOI:10.1016/b978-0-12-803581-8.10748-9.
[4] PLÖTZE M, NIEMZ, P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry[J]. European Journal of Wood and Wood Products, 2011, 69(4): 649-657. DOI:10.1007/s00107-010-0504-0.
[5] SIAU J F. Transport processes in wood[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984. DOI:10.1007/978-3-642-69213-0.
[6] BAO F C, SIAU J F, AVRAMIDIS S. Permeability and capillary structure of Chinese woods[J]. Wood Fiber Science, 1986, 18(2):220-227.
[7] SCHNEIDER A. Investigations on the suitability of mercury porosimetry for the evaluation of wood impregnability[J]. European Journal of Wood and Wood Products, 1983, 41(3): 101-107. DOI:10.1007/BF02608501.
[8] MIZUNO S, TORIZU R, SUGIYAMA J. Wood identification of a wooden mask using synchrotron X-ray microtomography[J]. Journal of Archaeological Science, 2010, 37(11): 2842-2845. DOI:10.1016/j.jas.2010.06.022.
[9] 尚莉莉, 孙正军, 江泽慧, 等. 毛竹维管束的截面形态及变异规律[J]. 林业科学, 2012, 48(12): 16-21. DOI:10.11707/j.1001-7488.20121203.
SHANG L L, SUN Z J, JIANG Z H, et al. Variation and morphology of vascular bundle in moso bamboo[J]. Scientia Silvae Sinicae, 2012, 48(12): 16-21.
[10] GROSSER D, LIESE W. On the anatomy of Asian bamboos, with special reference to their vascular bundles[J]. Wood Science and Technology, 1971, 5(4): 290-312. DOI:10.1007/bf00365061.
[11] 李兴会, 罗蓓, 何蕊. 青皮竹和慈竹不同发育期竹材解剖特征研究[J].世界竹藤通讯, 2017, 15(4): 9-12. DOI:10.13640/j.cnki.wbr.2017.04.002.
LI X H, LUO B, HE R. Anatomical characteristics of Bambusa texlilis McClure and Bambusa emeiensis in different growth periods[J]. World Bamboo and Rattan, 2017, 15(4): 9-12.
[12] 尹思慈. 木材学[M]. 北京:中国林业出版社, 2002.
YIN S C. Wood science[M]. Beijing: China Forestry Publishing House, 2002.
[13] 何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 157-162. DOI:10.3969/j.issn.1000-2006.2017.02.023.
HE S, XU J, WU Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(2): 157-162.
[14] 陈红. 竹纤维细胞壁结构特征研究[D]. 北京: 中国林业科学研究院, 2014.
CHEN H. Compare of structural characteristics of bamboo cell wall[D]. Beijing: Chinese Academy of Forestry, 2014.
[15] ZAUER M, PFRIEM A, WAGENFÜHR A. Toward improved understanding of the cell-wall density and porosity of wood determined by gas pycnometry[J]. Wood Science and Technology, 2013, 47(6): 1197-1211. DOI:10.1007/s00226-013-0568-1.
[16] ZHAO X, CHEN H L, KONG F G, et al. Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review[J]. 2019, 364(15): 226-243. DOI:10.1016/j.cej.2019.01.159.
[17] HE S, LIN L Y, FU F, et al. Microwave treatment for enhancing the liquid permeability of Chinese fir[J]. BioResources, 2014, 9(2): 1924-1938. DOI:10.15376/biores.9.2.1924-1938.
[18] BIZIKS V, ANDERSONS B,BELKOVA LBEL,KOVA L,, et al. Changes in the microstructure of birch wood after hydrothermal treatment[J]. Wood Science and Technology, 2013, 47(4): 717-735. DOI:10.1007/s00226-013-0531-1.
[19] MAYO S, EVANS R, CHEN F, et al. X-ray phase-contrast micro-tomography and image analysis of wood microstructure[J]. Journal of Physics: Conference Series, 2009, 186: 012105. DOI:10.1088/1742-6596/186/1/012105.
[20] STANDFEST G, KUTNAR A, PLANK B, et al. Microstructure of viscoelastic thermal compressed(VTC)wood using computed microtomography[J]. Wood Science and Technology, 2013, 47(1): 121-139. DOI:10.1007/s00226-012-0496-5.
[21] 李晖, 朱一辛, 杨志斌, 等. 我国竹材微观构造及竹纤维应用研究综述[J]. 林业科技开发, 2013, 27(3): 1-5. DOI:10.3969/j.issn.1000-8101.2013.03.001.
LI H, ZHU Y X, YANG Z B, et al. Research progress of bamboo microstructure and bamboo fiber in China[J]. Journal of Forestry Engineering, 2013, 27(3): 1-5.
[22] 徐明, 任海青, 郭伟, 等. 竹类植物纤维及其细胞超微结构的研究进展[J]. 经济林研究, 2007, 25(4): 82-89. DOI:10.3969/j.issn.1003-8981.2007.04.020.
XU M, REN H Q, GUO W, et al. Advance of researches on bamboo fiber and its cell ultrastructure[J]. Nonwood Forest Research, 2007, 25(4): 82-89.
[23] 林兰英, 何盛, 傅峰, 等. 基于图像处理的微波处理材裂纹评价[J]. 林业科学, 2014, 50(4): 84-89. DOI:10.11707/j.1001-7488.20140412.
LIN L Y, HE S, FU F, et al. Evaluation of the cracks in microwave-treated lumbers based on image processing[J]. Scientia Silvae Sinicae, 2014, 50(4): 84-89.
[24] 宋睿, 汪尧, 刘建军. 岩石孔隙结构表征与流体输运可视化研究进展[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 85-105. DOI:10.11885/j.issn.1674-5086.2018.07.18.03.
SONG R, WANG Y, LIU J J. Microscopic pore structure characterization and fluids transport visualization of reservoir rock[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(6): 85-105.
[25] MCCREESH C A, EHRLICH R, CRABTREE S J, et al. Petrography and reservoir physics II: relating thin section porosity to capillary pressure, the association between pore types and throat size[J]. Annales De Biologie Clinique, 1991, 15(1/2): 83-88. DOI:10.1111/j.1752-7325.1965.tb00465.x.
[26] BERTHOLD J, SALMÉN L. Inverse size exclusion chromatography(ISEC)for determining the relative pore size distribution of wood pulps[J]. Holzforschung, 1997, 51(4): 361-368. DOI:10.1515/hfsg.1997.51.4.361.
[27] 王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10): 123-133. DOI:10.11707/j.1001-7488.20141017.
WANG Z, WANG X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123-133.
[28] FURÓ I, DAICIC J. NMR cryoporometry: a novel method for the investigation of the pore structure of paper and paper coatings[J]. Nordic Pulp & Paper Research Journal, 1999, 14(3): 221-225. DOI:10.3183/npprj-1999-14-03-p221-225.
[29] 高鑫, 蔡家斌, 金菊婉, 等. 利用核磁共振测定木材润胀细胞壁的水分含量与孔径分布[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 150-156. DOI:10.3969/j.issn.1000-2006.2017.02.022.
GAO X, CAI J B, JIN J W, et al. Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cryoporometry[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(2): 150-156.
[30] 罗蓓, 赵广杰. 分形理论在木材科学领域中的应用[J]. 北京林业大学学报, 2010, 32(3): 204-208. DOI:10.13332/j.1000-1522.2010.03.014.
LUO B, ZHAO G J. Application of fractal theory on wood science[J]. Journal of Beijing Forestry University, 2010, 32(3): 204-208.
[31] 费本华. 分形理论在木材科学与工艺学中的应用[J]. 木材工业, 1999, 13(4): 27-28. DOI:10.19455/j.mcgy.1999.04.008.
FEI B H. Application of fractal theory on wood science[J]. China Wood Industry, 1999, 13(4): 27-28.
[32] 鲍甫成, 吕建雄. 木材渗透性可控制原理研究[J]. 林业科学, 1992, 28(4): 336-342. DOI:CNKI:SUN:LYKE.0.1992-04-007.
BAO F C, LYU J X. A study on the principle of permeability control of wood[J]. Scientia Silvae Sinicae, 1992, 28(4): 336-342.
[33] BOLTON A J, PETTY J A. Influence of critical point and solvent exchange drying on the gas permeability of conifer sapwood[J]. Wood Science, 1977, 9(4): 187-193.
[34] KEITH C T, CHAURET G. Anatomical studies of CCA penetration associated with conventional(tooth)and with micro(needle)incising[J]. Wood Fiber Science, 1988, 20(2): 197-208.
[35] ERICKSON H D. Permeability of southern pine wood: a review[J]. Wood Science, 1970, 2(3): 149-158.
[36] PERALTA P N. Encyclopedia of materials: science and technology Ⅱ wood: diffusion and permeability[J]. Encyclopedia of Materials Science & Technology, 2001: 9622-9626. DOI:10.1016/B0-08-043152-6/01742-3.
[37] LEHRINGER C H, HILLEBRAND K, SCHWARZE F W, et al. A review on promising approaches for liquid permeability improvement in softwood[J]. Wood Fiber Science, 2009, 41(4): 373-385. DOI:10.1007/s00468-009-0368-2.
[38] LEHRINGER C, HILLEBRAND K, RICHTER K, et al. Anatomy of bioincised Norway spruce wood[J]. International Biodeterioration & Biodegradation, 2010, 64(5): 346-355. DOI:10.1016/j.ibiod.2010.03.005.
[39] AHMED S A, CHUN S K. Permeability of Tectona grandis L.as affected by wood structure[J]. Wood Science and Technology, 2011, 45(3): 487-500. DOI:10.1007/s00226-010-0335-5.
[40] 裘福庚. 毛竹腔壁渗透性的初步研究[J]. 林业科学, 1979, 15(2): 156-158.
QIU F G. Preliminary study on permeability of moso bamboo culm[J]. Scientia Silvae Sinicae, 1979, 15(2): 156-158.
[41] CAI J C, SAN JOSÉ MARTÍNEZ F, MARTÍN M A, et al. An introduction to flow and transport in fractal models of porous media: part I[J]. Fractals, 2014, 22(3): 1402001. DOI:10.1142/s0218348x14020010.
[42] 汤永净, 汪鹏飞, 邵振东. 压汞实验和误差分析[J]. 实验技术与管理, 2015, 32(5): 50-54. DOI:10.3969/j.issn.1002-4956.2015.05.014.
TANG Y J, WANG P F, SHAO Z D. Mercury Intrusion Porosimetry and error analysis[J]. Experimental Technology and Management, 2015, 32(5): 50-54.
[43] 鲍甫成, 吕建雄. 微生物对长白鱼鳞云杉木材渗透性的影响[J]. 林业科学, 1991, 27(6): 615-62. DOI:CNKI:SUN:LYKE.0.1991-06-005.
BAO F C, LYU J X. The effect of microbe on the permeability of Spruce(Picea jezoensis var.komarovii)wood[J]. Scientia Silvae Sinicae, 1991, 27(6): 615-62.
[44] 张耀丽, 夏金尉, 王军锋. 开启木材细胞通道的途径[J]. 安徽农业大学学报, 2011, 38(6): 867-871. DOI:10.13610/j.cnki.1672-352x.2011.06.008.
ZHANG Y L, XIA J W, WANG J F. A review of methods of opening wood cell pathways[J]. Journal of Anhui Agricultural University, 2011, 38(6): 867-871.
[45] MEYER R W. Effect of enzyme treatment on bordered pitultra-structure, permeability, and toughness of the sap-wood of three western Conifers[J]. Wood Science, 1974, 6(3): 220-230.
[46] DE GROOTR C, SACHS I B. Permeability, enzyme, and pit membrane structure of stored Southern pines[J]. Wood Science, 1976, 9(2): 89-96. DOI:10.1515/hfsg.1976.30.6.202.
[47] DUNLEAVY J A, MORONEY J P, ROSSELL S E. The association of bacteria with the increased permeability of water stored spruce wood[J]. Annual British Wood Preservation Association Convention, 1973, 7: 1-21.
[48] PÁNEK M, REINPRECHT L, MAMONˇOVÁ M. Trichoderma viride for improving spruce wood impregnability[J]. BioResources, 2013, 8(2): 1731-1746. DOI:10.15376/biores.8.2.1731-1746.
[49] TORGOVNIKOV G, VINDEN P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173-182. DOI:10.13073/0015-7473-60.2.173.
[50] 何盛, 傅峰, 林兰英, 等. 微波处理技术在木材功能化改性研究中的应用[J]. 世界林业研究, 2014, 27(1): 62-67. DOI:10.13348/j.cnki.sjlyyj.2014.01.011.
HE S, FU F, LIN L Y, et al. Research progress in functional modification of microwave treated wood[J]. World Forestry Research, 2014, 27(1): 62-67.
[51] 张耀丽, 苗平, 庄寿增, 等. 微波、冷冻预处理对改善尾巨桉木材干燥性能的影响[J]. 南京林业大学学报, 2011, 35(2): 61-64. DOI:10.3969/j.issn.1000-2006.2011.02.013.
ZHANG Y L, MIAO P, ZHUANG S Z, et al. Improving the dry-ability of Eucalyptus by pre-microwave or pre-freezing treatment[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(2): 61-64.
[52] XU J, HE S, LI J, et al. Effect of vacuum freeze-drying on enhancing liquid permeability of Moso bamboo[J]. BioResources, 2018, 13(2): 4159-4174. DOI:10.15376/biores.13.2.4159-4174.
[53] 李永峰, 刘一星, 王逢瑚, 等. 木材渗透性的控制因素及改善措施[J]. 林业科学, 2011, 47(5):131-139. DOI:10.11707/j.1001-7488.20110521.
LI Y F, LIU Y X, WANG F H, et al. Controlling factors of wood permeability and its improving measures[J]. Scientia Silvae Sinicae, 2011, 47(5): 131-139.
[54] MORRELL J J, MORRIS P I. Methods for improving preservative penetration into wood:a review[C]//International Research Group on Wood Preservation. Stockholm: 2002.
[55] 常佳. 木材微波预处理与超声波辅助染色的研究[D]. 北京: 中国林业科学研究院, 2009.
CHANG J. The study on the wood microwave pretreatment and ultrasonic dyeing[D]. Beijing: Chinese Forestry Academy, 2009.
[56] 吕建雄, 鲍甫成, 姜笑梅, 等. 3种不同处理方法对木材渗透性影响的研究[J]. 林业科学, 2000, 36(4): 67-76. DOI:10.3321/j.issn:1001-7488.2000.04.013.
LYU J X, BAO F C, JIANG X M, et al. Studies on the effect of three different treatments on wood permeability[J]. Scientia Silvae Sinicae, 2000, 36(4): 67-76.
[57] DEMESSIE E S, HASSAN A, LEVIENK L, et al. Supercritial carlxon dioxide treatment:effect on permeability of Douglas fir heatwood[J]. Wood Fiber Science, 1995, 27(3): 296-300. DOI:10.1007/s001070050081.
[58] 何盛, 吴再兴, 徐军, 等. 碱液处理对改善竹束液体渗透性能的研究[J].林业工程学报, 2019, 4(3): 25-31. DOI:10.13360/j.issn.2096-1359.2019.03.004.
HE S, WU Z X, XU J, et al. Improvement of liquid permeability of bamboo bundle through alkali treatment[J]. Journal of Forestry Engineering, 2019, 4(3): 25-31.

相似文献/References:

[1]金菊婉.木质复合材料与实木的防腐性能比较[J].林业工程学报,2009,23(04):1.
 JIN Ju wan.Comparison of Preservation between WoodBased Composites and Lumber[J].Journal of Forestry Engineering,2009,23(02):1.
[2]马大国,马岩,姜新波.基于LS-SVM的木材表面缺陷网格化检测[J].林业工程学报,2012,26(06):73.
 MA Da guo,MA Yan,JIANG Xin bo.Wood surface defects gridding detection based on LS-SVM[J].Journal of Forestry Engineering,2012,26(02):73.
[3]袁觉,李群,肖国林,等.浅谈银杏木材的利用与发展[J].林业工程学报,2002,16(02):6.
[4]彭万喜,朱同林,郑真真,等.木材抽提物的研究现状与趋势[J].林业工程学报,2004,18(05):6.
[5]宋晓辉,高东海,王群.人工林杨树木材液体纵向渗透性研究[J].林业工程学报,2005,19(04):24.
[6]夏炎,彭红,卢晓宁,等.木材流体渗透性的研究现状与展望[J].林业工程学报,2007,21(05):9.
[7]黄慧 贺磊 余能富 等.酯化处理对竹材结构及热性能的影响[J].林业工程学报,2014,28(04):105.
 HUANG Hui,HE Lei,YU Nengfu,et al.Esterification influences on structure and thermal properties of bamboo[J].Journal of Forestry Engineering,2014,28(02):105.
[8]马灵飞 刘嵘 方群 等.木材热处理研究现状与发展前景[J].林业工程学报,2014,28(05):1.
 MA Lingfei,LIU Rong,FANG Qun,et al.The research status quo and development prospects on timber heat treatment[J].Journal of Forestry Engineering,2014,28(02):1.
[9]章卫钢,谢大原,李延军,等.热处理工艺对竹材蠕变性能的影响[J].林业工程学报,2015,29(01):72.[doi:10.13360/j.issn.1000-8101.2015.01.021]
 ZHANG Weigang,XIE Dayuan,LI Yanjun,et al.Effect of heat treatment process on creep behavior of bamboo[J].Journal of Forestry Engineering,2015,29(02):72.[doi:10.13360/j.issn.1000-8101.2015.01.021]
[10]周晓燕,陈敏智,杜官本.农林生物质材料表面等离子体改性技术研究进展[J].林业工程学报,2017,2(01):1.[doi:10.13360/j.issn.2096-1359.2017.01.001]
 ZHOU Xiaoyan,CHEN Minzhi,DU Guanben.Research progress on surface modification of agriculture and forestry biomass materials by plasma treatment[J].Journal of Forestry Engineering,2017,2(02):1.[doi:10.13360/j.issn.2096-1359.2017.01.001]
[11]孙芳利,PROSPER Nayebare Kakwara,吴华平,等.木竹材防腐技术研究概述[J].林业工程学报,2017,2(05):1.[doi:10.13360/j.issn.2096-1359.2017.05.001]
 SUN Fangli,PROSPER Nayebare Kakwara,WU Huaping,et al.A review on the development of wood and bamboo preservation[J].Journal of Forestry Engineering,2017,2(02):1.[doi:10.13360/j.issn.2096-1359.2017.05.001]

备注/Memo

备注/Memo:
收稿日期:2019-06-29 修回日期:2019-10-28
基金项目:国家自然科学基金青年基金(31700489); 浙江省科技计划项目(2018F10006); 国家重点研发计划(2016YFD0600904); 江西省财政厅省级财政科研项目(2018511501)。
作者简介:何盛,男,博士,助理研究员,研究方向为竹木材液体渗透性及其功能性改良。通信作者:胡玉安,男,副研究员。E-mail:147477329@qq.com
更新日期/Last Update: 2020-03-10