[1]徐蕊,司传领*,孔凡功,等.γ-戊内酯的制备及其在纤维素生物质转化方面的应用[J].林业工程学报,2020,5(02):20-28.[doi:10.13360/ j.issn.2096-1359.201904004]
 XU Rui,SI Chuanling*,KONG Fangong,et al.Synthesis of γ-valerolactone and its application in biomass conversion[J].Journal of Forestry Engineering,2020,5(02):20-28.[doi:10.13360/ j.issn.2096-1359.201904004]
点击复制

γ-戊内酯的制备及其在纤维素生物质转化方面的应用()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
20-28
栏目:
专论综述
出版日期:
2020-03-11

文章信息/Info

Title:
Synthesis of γ-valerolactone and its application in biomass conversion
文章编号:
2096-1359(2020)02-0020-09
作者:
徐蕊1司传领12*孔凡功2李晓云123
济南 250353; 3.天津科技大学天津市海洋资源与化学重点实验室,天津 300457
Author(s):
XU Rui1 SI Chuanling12* KONG Fangong2 LI Xiaoyun123
1. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianji 300457, China; 2. State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China; 3. Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
关键词:
γ-戊内酯 合成 生物质转化 绿色溶剂 催化
Keywords:
γ-valerolactone synthesis biomass conversion green solvent catalyst
分类号:
TQ352; S785
DOI:
10.13360/ j.issn.2096-1359.201904004
文献标志码:
A
摘要:
γ-戊内酯是以木质纤维素生物质为原料制备的一种潜力巨大的平台化合物,它既可转化为高密度燃料、相关高分子材料以及其他高价值化学品,也可作为绿色溶剂促进木质生物质向其他高值方向转化。在化石能源日益紧俏、环境问题日益严重的今天,对γ-戊内酯进行深入研究显得尤为重要。但在实际生产中,仍存在产量低、除杂难等经济环保类问题需要解决。基于γ-戊内酯研究的最新进展,从γ-戊内酯的制备与应用两方面进行了论述,综述了生物质催化生产γ-戊内酯的研究进展,说明不同底物生产γ-戊内酯的理论基础与优缺点,并以贵金属和非贵金属催化剂为界,分类讨论了多种用于合成γ-戊内酯的催化剂。最后,结合γ-戊内酯在纤维素生物质转化应用方面的进展情况,探索了γ-戊内酯与其他相关有机物之间的制备关系,为γ-戊内酯的进一步开发利用提供了思路。
Abstract:
Energy is an essential item for human survival and social development. As the energy price continues to increase, the perception has been grown that bioenergy can provide great environmental advantages over fossil energy sources. By contributing to the increased energy security, bioenergy also has strategic implications, particularly for oil importing countries. The bioenergy can help reduce greenhouse gas emissions, which is one of the most important global concerns. However, there are challenges to be overcome before the full utilization of bioenergy. A number of problems associated with bioenergy production, especially regarding large-scale industrial operations, have been placed high on the priority list. Made from lignocellulosic biomass, γ-valerolactone(GVL)is a potential platform compound. With the increasing demand for energy and the increasingly prominent environmental problems, it is essential to extend the applications of GVL. GVL can be converted into high-value chemicals, and can also be used as a green solvent to promote the conversion of biomass to other high-value chemicals. The synthesis of GVL from furans or lignocellulosic biomass was reported in many studies, and varied reaction mechanisms have been proposed. However, in the large-scale production, it still needs to be further investigated to achieve more economical and environmentally friendly applications. Based on the latest research achievements in the study of GVL, the progress in the research and production of GVL from biomass was reviewed, and the theoretical basis, advantages and disadvantages of different substrates for the production of GVL were discussed in detail. Several types of catalysts for the synthesis of GVL were classified and discussed on the basis of noble and non-noble metal catalysts, which provided a basis for the design of new catalysts. The application of GVL as a green solvent for the valorization of lignocellulosic biomass has been studied in depth, which is directly related to the production and yield improvement of target products such as sugar monomer and furfural. The relationship between GVL and other platform compounds was explored by combining with the development of the GVL research. Finally, this work also proposed new approaches and challenging strategies for the further development and applications of GVL in the industrial productions.

参考文献/References:

[1] 王杰, 张因, 郭健健, 等. Ni/ZrO2-SiO2催化剂催化乙酰丙酸加氢合成γ-戊内酯[J]. 化工学报, 2018, 69(8): 3452-3459. DOI: 10.11949/j.issn.0438-1157.20180027.
WANG J, ZHANG Y, GUO J J, et al. γ-valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst[J]. Journal of Chemical Engineering, 2018, 69(8): 3452-3459.
[2] ZHOU H, SONG J, KANG X, et al. One-pot conversion of carbohydrates into gamma-valerolactone catalyzed by highly cross-linked ionic liquid polymer and Co/TiO2[J]. Rsc Advances, 2015, 5(20): 15267-15273. DOI:10.1039/C4RA14363A.
[3] LI C,XU G Y, ZHAI Y X, et al. Hydrogenation of biomass-derived ethyl levulinate into γ-valerolactone by activated carbon supported bimetallic Ni and Fe catalysts[J]. Fuel,2017, 203:23-31. DOI:10.1016/j.fuel.2017.04.082.
[4] MEI C, DUMESIC J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts[J]. Chemical Communications, 2011, 47(44): 12233-12235. DOI: 10.1039/c1cc14748j.
[5] TANG X, CHEN H W, HU L, et al. Conversion of biomass to γ-valerolactone by catalytic transfer hydrogenation of ethyl levulinate over metal hydroxides[J]. Applied Catalysis B: Environmental, 2014, 147: 827-834. DOI: 10.1016/j.apcatb.2013.10.021.
[6] SON P A, NISHIMURA S, EBITANI K. Production of γ-valerolactone from biomass-derived compounds using formic acid as a hydrogen source over supported metal catalysts in water solvent[J]. Rsc Advances, 2014, 4(21): 10525-10530.DOI:10.1039/c3ra47580h.
[7] ZHU S, XUE Y, GUO J, et al. Integrated conversion of hemicellulose into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5[J]. ACS Catalysis, 2016, 6(3): 2035-2042.DOI: 10.1021/acscatal.5b02882.
[8] BUI L, LUO H, GUNTHER W R, et al. Domino reaction catalyzed by zeolites with brønsted and lewis acid sites for the production of γ-valerolactone from furfural[J]. Angewandte Chemie International Edition, 2013, 52(31): 8022-8025.DOI: 10.1002/anie.201302575.
[9] 鲁怡娟. 生物质基糠醛制备高附加值化合物的研究[D]. 合肥: 中国科学技术大学, 2018.
LU Y J. Production of high value-added compounds from biomass-derived furfural[D]. Hefei: University of Science and Technology of China, 2018.
[10] UPARE P P, LEE J M, HWANG D W, et al. Selective hydrogenation of levulinic acid to γ-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial & Engineering Chemistry, 2011, 17(2): 287-292. DOI: 10.1016/j.jiec.2011.02.025.
[11] 余皓, 孟珍, 曹永海, 等. 一种硫掺杂碳材料负载钌催化剂催化乙酰丙酸加氢制取γ-戊内酯的方法: CN108409692A[P]. 2018-08-17.
YU H, ENG Z, CAO Y H, et al. A method for the hydrogenation of levulinic acid to produce gamma-pentyl lactone catalyzed by Ruthenium catalyst supported on sulfur-doped carbon materials: CN108409692A[P]. 2018-08-17.
[12] MEHDI H, FÁBOS V, TUBA R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass: from sucrose to levulinic acid, γ-valerolactone, 1, 4-pentanediol, 2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008, 48(1/2/3/4): 49-54. DOI:10.1007/s11244-008-9047-6.
[13] 张勇. 铈铁氧化物—贵金属复合催化剂的合成及选择催化加氢性能研究[D]. 合肥: 中国科学技术大学, 2017.
ZHANG Y. Synthesis ofmetal oxide(Ce or Fe)-Nobel metal complex catalysts for selectively catalytic hydrogenation[D]. Hefei: University of Science and Technology of China, 2017.
[14] FENG J, GU X, XUE Y, et al. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source[J]. Science of The Total Environment, 2018, 633:426-432. DOI: 10.1016/j.scitotenv.2018.03.209.
[15] TAN J, CUI J, DING G, et al. Efficient aqueous hydrogenation of levulinic acid to γ-valerolactone over highly active and stable ruthenium catalyst[J]. Catalysis Science & Technology, 2015, 6(5):1469-1475. DOI:10.1039/C5CY01374G.
[16] LUO W, SANKAR M, BEALE A M, et al. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone[J]. Nature Communications, 2015, 6: 6540. DOI: 10.1038/ncomms7540.
[17] PISKUN A S, FTOUNI J, TANG Z, et al. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: effect of catalyst synthesis protocols on activity[J]. Applied Catalysis A: General, 2018, 549: 197-206. DOI:10.1016/j.apcata.2017.09.032.
[18] DELHOMME C, SCHAPER L A, ZHANG-PREßE M, et al. Catalytic hydrogenation of levulinic acid in aqueous phase[J]. Journal of Organometallic Chemistry, 2013, 724: 297-299. DOI:10.1016/j.jorganchem.2012.10.030.
[19] YANG Y, GAO G, ZHANG X, et al. Facile fabrication of composition-tuned Ru-Ni bimetallics in ordered mesoporous carbon for levulinic acid hydrogenation[J]. ACS Catalysis, 2014, 4(5): 1419-1425.DOI: 10.1021/cs401030u.
[20] SUDHAKAR M, LAKSHMI KANTAM M, SWARNA JAYA V, et al. Hydroxyapatite as a novel support for Ru in the hydrogenation of levulinic acid to γ-valerolactone[J]. Catalysis Communications, 2014, 50: 101-104. DOI:10.1016/j.catcom.2014.03.005.
[21] YAN K, LAFLEUR T, JARVIS C, et al. Clean and selective production of γ-valerolactone from biomass-derived levulinic acid catalyzed by recyclable Pd nanoparticle catalyst[J]. Journal of Cleaner Production, 2014, 72: 230-232. DOI: 10.1016/j.jclepro.2014.02.056.
[22] YAO Y, WANG Z, ZHAO Z, et al. A stable and effective Ru/polyethersulfone catalyst for levulinic acid hydrogenation to γ-valerolactone in aqueous solution[J]. Catalysis Today, 2014, 234: 245-250. DOI:10.1016/j.cattod.2014.01.020.
[23] DU X L, LIU Y M, WANG J Q, et al. Catalytic conversion of biomass-derived levulinic acid into γ-valerolactone using iridium nanoparticles supported on carbon nanotubes[J]. Chinese Journal of Catalysis, 2013, 34(5): 993-1001.DOI:10.1016/S1872-2067(11)60522-6.
[24] LI H, FANG Z, YANG S. Direct catalytic transformation of biomass derivatives into biofuel component γ-valerolactone with magnetic Nickel-Zirconium nanoparticles[J]. Chempluschem, 2016, 81(1): 135-142. DOI:10.1002/cplu.201500492.
[25] HENGNE A M, RODE C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chemistry, 2012, 14(4): 1064-1072. DOI: 10.1039/c2gc16558a.
[26] 张黎. CuAg/Al2O3催化乙酰丙酸合成γ-戊内酯以及Ag抑制Cu析出机理的研究[D]. 大连:大连大学, 2018.
ZHANG L. Hydrogenation of levulinic acid into γ-valerolactone over CuAg/Al2O3 bimetallic catalyst and mechanism of preventing Cu leaching by Ag[D].Dalian: Dalian University, 2018.
[27] XIE Y, LI F, WANG J, et al. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over a novel porous zirconium trimetaphosphate[J]. Molecular Catalysis, 2017, 442: 107-114.
[28] JIANG K, SHENG D, ZHANG Z, et al. Hydrogenation of levulinic acid to γ-valerolactone in dioxane over mixed MgO-Al2O3 supported Ni catalyst[J]. Catalysis Today, 2016, 274: 55-59.DOI:10.1016/j.cattod.2016.01.056.
[29] MOHAN V, VENKATESHWARLU V, PRAMOD C V, et al. Vapour phase hydrocyclisation of levulinic acid to γ-valerolactone over supported Ni catalysts[J]. Catalysis Science & Technology, 2014, 4: 1253-1259. DOI: 10.1039/c3cy01072d.
[30] YAN K, CHEN A C. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy, 2013, 58: 357-363. DOI:10.1016/j.energy.2013.05.035.
[31] ZHANG C, HUO Z, REN D, et al. Catalytic transfer hydrogenation of levulinate ester into γ-valerolactone over ternary Cu/ZnO/Al2O3 catalyst[J]. Journal of Energy Chemistry, 2019, 32: 189-197.DOI: 10.1016/j.jechem.2018.08.001.
[32] VALEKAR A H, CHO K H, CHITALE S K, et al. Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal-organic frameworks[J]. Green Chemistry, 2016, 18(16): 4542-4552.DOI:10.1039/C6GC00524A.
[33] STRAPPAVECCIA G, ISMALAJ E, PETRUCCI C, et al. A biomass-derived safe medium to replace toxic dipolar solvents and access cleaner heck coupling reactions[J]. Green Chemistry, 2015, 17(1): 365-372. DOI: 10.1039/C4GC01677G.
[34] RASINA D, KAHLER-QUESADA A, ZIARELLI S, et al. Heterogeneous palladium-catalysed catellani reaction in biomass-derived γ-valerolactone[J]. Green Chemistry, 2016, 18(18): 5025-5030. DOI: 10.1039/C6GC01393G.
[35] FEGYVERNEKI D, ORHA L, LÁNG G, et al. Gamma-valerolactone-based solvents[J]. Tetrahedron, 2010, 66(5): 1078-1081. DOI:10.1016/j.tet.2009.11.013.
[36] TSILOMELEKIS G, JOSEPHSON T R, NIKOLAKIS V, et al. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures[J]. ChemSusChem, 2014, 7(1): 117-126.DOI:10.1002/cssc.201300786.
[37] HELTZEL J, LUND C R F. Glucose formate conversion in gamma-valerolactone[J]. Catalysis Today, 2016, 269: 88-92. DOI: 10.1016/j.cattod.2015.12.020.
[38] WETTSTEIN S G, ALONSO D M, CHONG Y X, et al. Production of levulinic acid and gamma-valerolactone(GVL)from cellulose using gvl as a solvent in biphasic systems[J]. Energy & Environmental Science, 2012, 5(8): 8199-8203. DOI:10.1039/c2ee22111j.
[39] LUTERBACHER J S, RAND J M, ALONSO D M, et al. Nonenzymatic sugar production from biomass using biomass-derived gamma-valerolactone[J]. Science, 2014, 343(6168): 277-280. DOI: 10.1126/science.1246748.
[40] MELLMER M A, MARTIN ALONSO D, LUTERBACHER J S, et al. Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides[J]. Green Chemistry, 2014, 16(11): 4659-4662. DOI:10.1039/c4gc01768d.
[41] ZHANG L, YU H, WANG P, et al. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst[J]. Bioresource Technology, 2014, 151: 355-360. DOI: 10.1016/j.biortech.2013.10.099.
[42] ALONSO D M, GALLO J M R, MELLMER M A, et al. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science & Technology, 2013, 3(4): 927-931 DOI: 10.1039/C2CY20689G.
[43] QI L, MUI Y F, LO S W, et al. Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl)furfural and levulinic and formic acids in γ-valerolactone as a green solvent[J]. ACS Catalysis, 2014, 4(5): 1470-1477. DOI: 10.1021/cs401160y.
[44] FANG W, SIXTA H. Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water[J]. Chemsuschem, 2015, 8(1): 73-76. DOI: 10.1002/cssc.201402821.
[45] LUTERBACHER J S, AZARPIRA A, MOTAGAMWALA A H, et al. Lignin monomer production integrated into the γ-valerolactone sugar platform[J]. Energy & Environmental Science, 2015, 8(9): 2657-2663. DOI:10.1039/c5ee01322d.
[46] BOND J Q, MARTIN ALONSO D, WEST R M, et al. γ-valerolactone ring-opening and decarboxylation over SiO2/Al2O3 in the presence of water[J]. Langmuir, 2010, 26(21): 16291-16298. DOI:10.1021/la101424a.
[47] LI W, FAN G L, YANG L, et al. Highly efficient vapor-phase hydrogenation of biomass-derived levulinic acid over structured nanowall-like nickel-based catalyst[J]. ChemCatChem, 2016, 8(16):2724-2733. DOI:10.1002/cctc.201600524.
[48] CARETTO A, NOÈ M, SELVA M, et al. Upgrading of biobased lactones with dialkylcarbonates[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(9): 2131. DOI: 10.1021/sc500323a.
[49] CHALID M, HEERES H J, BROEKHUIS A A. Green polymer precursors from biomass-based levulinic acid[J]. Procedia Chemistry, 2012, 4: 260-267. DOI:10.1016/j.proche.2012.06.036.

相似文献/References:

[1]饶纤纤,武辰俞,骆庆莉,等.一种含长联接链的松香基双子表面活性剂的合成与性能分析[J].林业工程学报,2019,4(06):83.[doi:10.13360/j.issn.2096-1359.2019.06.012]
 RAO Xianxian,WU Chenyu,LUO Qingli,et al.Synthesis and properties of a rosin-based gemini surfactant containing a long spacer[J].Journal of Forestry Engineering,2019,4(02):83.[doi:10.13360/j.issn.2096-1359.2019.06.012]

备注/Memo

备注/Memo:
收稿日期:2019-04-03 修回日期:2019-07-23
基金项目:天津市重点研发计划科技支撑重点项目(19YFZCSN00950); 第64批中国博士后科学基金面上资助(2018M641661); 天津市制浆造纸重点实验室基金资助(201810); 天津市海洋资源与化学重点实验室基金资助(2018-09)。
作者简介:徐蕊,女,博士,研究方向农林生物质。通信作者:司传领,男,教授。E-mail:sichli@tust.edu.cn
更新日期/Last Update: 2020-03-10