[1]娄志超,袁成龙,李延军*,等.饱和蒸汽热处理对竹束化学成分和结晶度的影响[J].林业工程学报,2020,5(02):29-35.[doi:10.13360/ j.issn.2096-1359.201905014]
 LOU Zhichao,YUAN Chenglong,LI Yanjun*,et al.Effect of saturated steam treatment on the chemical composition and crystallinity properties of bamboo bundles[J].Journal of Forestry Engineering,2020,5(02):29-35.[doi:10.13360/ j.issn.2096-1359.201905014]





Effect of saturated steam treatment on the chemical composition and crystallinity properties of bamboo bundles
1.南京林业大学材料科学与工程学院,南京 210037; 2.杭州大索科技有限公司,杭州 311251; 3.福建华宇集团竹业有限公司,福建 建瓯 353199
LOU Zhichao1 YUAN Chenglong1 LI Yanjun12* SHEN Daohai2 YANG Lintian1 LIU Jie1 ZHANG Aiwen3
1. College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Hangzhou Dasuo Technology Co. Ltd., Hangzhou 311251, China; 3. Fujian Huayu Group Bamboo Industry Co. Ltd., Jian'ou 353199, Fujian, China
竹束 重组竹 饱和蒸汽热处理 结晶度 化学成分
bamboo bundles bamboo scrimber saturated steam heat treatment crystallinity chemical composition
10.13360/ j.issn.2096-1359.201905014
为揭示竹材饱和蒸汽热处理的微观机理,并为竹材材性调控及热处理工艺参数的优化提供理论依据,采用傅里叶变换红外光谱法(FT-IR)和X射线衍射法(XRD)研究饱和蒸汽热处理毛竹竹束过程中,竹束初始含水率和热处理时间对其化学成分和相对结晶度的影响规律。结果表明:绝干竹束与初始含水率为20%的竹束相比,其相对结晶度迅速由0.62降低到0.50; 进一步提高竹束初始含水率,热处理产物相对结晶度变化不大,维持在0.48左右。同时,热处理使竹束结晶区晶层距离变大,粒径增加。这主要是由于饱和蒸汽热处理会使竹束中产生宏观残余应力,导致晶格畸变,进而使晶格各向异性收缩。此外,随着热处理时间的延长,竹束中木质素含量逐渐提高,而半纤维素含量逐渐降低,处理50 min后半纤维素含量降低幅度分别为71.8%,68.6%,84.4%,52.2% 和87.1%。纤维素含量呈现先降低后提高再降低的趋势,热处理30~40 min后,竹束中的纤维素含量达到最大值。分析认为,这主要是由于半纤维素热降解会产生大量乙酸,催化纤维素在非结晶区的降解,但随着热处理时间的延长,竹束中半纤维素降解越来越剧烈,导致纤维素相对含量增加。
Replacing wood with bamboo has become an effective way to alleviate the pressure of raw material resource shortage in the wood processing industry. In recent years, bamboo-based composites have been widely recognized by the society and developed quickly. Using saturated steam instead of air or oil as heat transfer medium could efficiently carry out the heat treatment process of bamboo-based materials without burning the bamboo, which would also effectively improve their corresponding physical and mechanical properties, benefiting the application of the heat-treated bamboo-based products. However, limited research has been completed on this treatment method, especially on the variation of the chemical composition and crystallinity properties of bamboo bundles during the saturated steam treatment. In this work, the effects of the initial moisture content and heat treatment time on chemical composition and relative crystallinity of bamboo bundles were examined by the Fourier transform infrared(FT-IR)spectroscopy and X-ray diffraction(XRD). The results showed that the effect of the initial moisture content of bamboo on the relative crystallinity of cellulose mainly performed during the period from absolute dry to 20% moisture content. The relative crystallinity of bamboo bundles decreased rapidly from 0.62 to 0.50 initially, and then the relative crystallinity remained unchanged at around 0.48 when further increasing the corresponding initial moisture content. Furthermore, the saturated steam heat treatment enlarged the crystal layer distance and the particle size of the contained cellulose in crystallization zone. This was mainly due to the macro residual stress in the cellulose of bamboo bundles caused by saturated steam heat treatment, resulting in lattice distortion and then making the lattice anisotropic shrinkage. In addition, with the prolongation of heat treatment time, the content of lignin gradually increased with the decrease of hemicellulose. After 50 min of treatment, the content of hemicellulose decreased by 71.8%, 68.6%, 84.4%, 52.2% and 87.1% for the bamboo bundles with the increase of the corresponding initial moisture content from 10% to 80%, respectively. The content of cellulose firstly decreased, then increased, and after that decreased, reaching the maximum in 30-40 min. This was mainly due to the thermal degradation of hemicellulose, producing a large amount of acetic acid at the beginning of the heat treatment reaction, which catalyzed the degradation of cellulose in the amorphous zone in the acidic environment. After that, with the increase of heat treatment time, the degradation of hemicellulose in bamboo bundles became more and more intense, resulting in the increase of the relative content of cellulose.


[1] 蒋身学, 程瑞香, 张齐生. 旋切竹单板生产工艺简介[J]. 人造板通讯, 2004, 11(5): 19-20. DOI:10.3969/j.issn.1673-5064.2004.05.006.
JIANG S X, CHENG R X, ZHANG Q S. A brief description of peeled bamboo veneer production process[J]. China Wood-Based Panels, 2004, 11(5): 19-20.
[2] 李吉庆, 吴智慧, 张齐生, 等. 新型竹集成材家具的发展前景及其效益[J]. 福建农林大学学报(哲学社会科学版), 2004, 7(3): 89-93. DOI:10.3969/j.issn.1671-6922.2004.03.024.
LI J Q, WU Z H, ZHANG Q S, et al. The efficiency and prospects of the development of new type glued-laminated bamboo furniture[J]. Journal of Fujian Agriculture and Forestry University(Philosophy and Social Sciences), 2004, 7(3): 89-93.
[3] 于文吉. 我国高性能竹基纤维复合材料的研发进展[J].木材工业, 2011, 25(1): 6-8. DOI:10.19455/j.mcgy.2011.01.002.
YU W J. Development of bamboo-fiber based composites[J]. China Wood Industry, 2011, 25(1): 6-8.
[4] NGUILA INARI G, PETRISSANS M, GERARDIN P. Chemical reactivity of heat-treated wood[J]. Wood Science and Technology, 2007, 41(2): 157-168. DOI:10.1007/s00226-006-0092-7.
[5] BOONSTRA M J, VAN ACKER J, KEGEL E, et al. Optimisation of a two-stage heat treatment process: durability aspects[J]. Wood Science and Technology, 2007, 41(1): 31-57. DOI:10.1007/s00226-006-0087-4.
[6] 黄荣凤, 吕建雄, 曹永建, 等. 高温热处理对毛白杨木材化学成分含量的影响[J]. 北京林业大学学报, 2010, 32(3): 155-160. DOI:10.13332/j.1000-1522.2010.03.027.
HUANG R F, LYU J X, CAO Y J, et al. Impact of heat treatment on chemical composition of Chinese white poplar wood[J]. Journal of Beijing Forestry University, 2010, 32(3): 155-160.
[7] 夏雨, 牛帅红, 李延军, 等. 常压高温热处理对红竹竹材物理力学性能的影响[J]. 浙江农林大学学报, 2018, 35(4): 765-770. DOI:10.11833/j.issn.2095-0756.2018.04.023.
XIA Y, NIU S H, LI Y J, et al. Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature[J]. Journal of Zhejiang A&F University, 2018, 35(4): 765-770.
[8] 莫军前, 张文博. 基于近红外光谱技术的热处理竹材物理力学性能[J]. 林业工程学报, 2019, 4(1): 32-38. DOI:10.13360/j.issn.2096-1359.2019.01.005.
MO J Q, ZHANG W B. Physical and mechanical properties of heat-treated bamboo using near infrared reflectance spectroscopy[J]. Journal of Forestry Engineering, 2019, 4(1): 32-38.
[9] 宋路路, 任慧群, 王新洲, 等. 高温饱和蒸汽处理对竹材材性的影响[J]. 林业工程学报, 2018, 3(2): 23-28. DOI:10.13360/j.issn.2096-1359.2018.02.004.
SONG L L, REN H Q, WANG X Z, et al. Effect of high temperature saturated steam treatment on bamboo properties[J]. Journal of Forestry Engineering, 2018, 3(2): 23-28.
[10] 李延军, 胡守恒, 吕荣金, 等. 高温热处理竹束制造户外重组竹材的生产技术[J]. 中国人造板, 2018, 25(6): 9-13.
LI Y J, HU S H, LYU R J, et al. Production technology of outdoor reconstituted bamboo[J]. China Wood-Based Panels, 2018, 25(6): 9-13.
[11] 张红漫, 郑荣平, 陈敬文, 等. NREL法测定木质纤维素原料组分的含量[J]. 分析试验室, 2010, 29(11): 15-18. DOI:10.3969/j.issn.1000-0720.2010.11.004.
ZHANG H M, ZHENG R P, CHEN J W, et al. Investigation on the determination of lignocellulosics components by NREL method[J]. Chinese Journal of Analysis Laboratory, 2010, 29(11): 15-18.
[12] 李贤军, 刘元, 高建民, 等. 高温热处理木材的FTIR和XRD分析[J].北京林业大学学报, 2009, 31(S1): 104-107. DOI:10.13332/j.1000-1522.2009.s1.019.
LI X J, LIU Y, GAO J M, et al. Characteristics of FTIR and XRD for wood with high-temperature heating treatment[J]. Journal of Beijing Forestry University, 2009, 31(S1): 104-107.
[13] TJEERDSMA B F, MILITZ H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Als Roh- Und Werkstoff, 2005, 63(2): 102-111. DOI:10.1007/s00107-004-0532-8.
[14] 韩景泉, 丁琴琴, 鲍雅倩, 等. 纤维素纳米纤丝增强导电水凝胶的合成与表征[J]. 林业工程学报, 2017, 2(1): 84-89. DOI:10.13360/j.issn.2096-1359.2017.01.015.
HAN J Q, DING Q Q, BAO Y Q, et al. Synthesis and characterization of nanocellulose reinforced conductive hydrogel[J]. Journal of Forestry Engineering, 2017, 2(1): 84-89.
[15] 齐华春, 程万里, 刘一星. 高温高压过热蒸汽处理木材的力学特性及化学成分变化[J]. 东北林业大学学报, 2005, 33(3): 44-46. DOI:10.3969/j.issn.1000-5382.2005.03.019.
QI H C, CHENG W L, LIU Y X. Mechanical characteristics and chemical compositions of superheated steam-treated wood under high temperature and pressure[J]. Journal of Northeast Forestry University, 2005, 33(3): 44-46.


 HUANG Shan,ZHAO Min,HE Qiang,et al.Research on factors influencing resin soaking of bamboo and wood bundles[J].Journal of Forestry Engineering,2011,25(02):93.
 ZHAO Ming,HUANG shan,HUANG He lang,et al.Influences of woodbamboo hybrid ratio on bending properties of reconstituted woobamboo composite panel[J].Journal of Forestry Engineering,2011,25(02):32.
 ZHOU Aiping,LIU Rui,SHEN Yurong,et al.Experiment study on ultimate load-bearing capacity of carbon fiber reinforced polymer reinforced parallel bamboo beam[J].Journal of Forestry Engineering,2017,2(02):137.[doi:10.13360/j.issn.2096-1359.2017.03.022]
 ZHOU Aiping,WANG Chao,LIU Rui,et al.Ultimate deformation calculation method of carbon fiber reinforced polymer reinforced parallel strand bamboo beams[J].Journal of Forestry Engineering,2017,2(02):115.[doi:10.13360/j.issn.2096-1359.2017.05.020]
 HUANG Daobang,WANG Wei,CHEN Yonghua,et al.Optimization of silica-alumina sol anti-mold agent of bamboo scrimber using response surface methodology[J].Journal of Forestry Engineering,2018,3(02):29.[doi:10.13360/j.Issn.2096-1359.2018.03.005]
 HE Sheng,WU Zaixing,XU Jun,et al.Improvement of liquid permeability of bamboo bundle through alkali treatment[J].Journal of Forestry Engineering,2019,4(02):25.[doi:10.13360/j.issn.2096-1359.2019.03.004]


收稿日期:2019-05-09 修回日期:2019-07-16
基金项目:“十三五”国家重点研发计划(2017YFD0600801); 江苏省农业科技自主创新项目(CX(18)3033); 江苏省高等学校自然科学研究重大项目(17KJA220004); 江苏省科技计划项目(BE2018391); 福建省科技计划项目(2019N3014)。
更新日期/Last Update: 2020-03-10