[1]吴雨生,张伟*,杨增帅,等.木结构构件钻削功率的影响因素[J].林业工程学报,2020,5(02):36-41.[doi:10.13360/ j.issn.2096-1359.201905041]
 WU Yusheng,ZHANG Wei*,YANG Zengshuai,et al.Influence factors of drilling power of wood structural component[J].Journal of Forestry Engineering,2020,5(02):36-41.[doi:10.13360/ j.issn.2096-1359.201905041]
点击复制

木结构构件钻削功率的影响因素()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
36-41
栏目:
木材科学与技术
出版日期:
2020-03-11

文章信息/Info

Title:
Influence factors of drilling power of wood structural component
文章编号:
2096-1359(2020)02-0036-06
作者:
吴雨生张伟*杨增帅王勇
国家林业和草原局北京林业机械研究所,北京 100029
Author(s):
WU Yusheng ZHANG Wei* YANG Zengshuai WANG Yong
Beijing Forestry Machinery Research Institute of National Forestry and Grassland Administration, Beijing 100029, China
关键词:
木结构构件 钻削 正交试验 切削功率 参数优化
Keywords:
wood structural component drilling orthogonal test cutting power parameter optimization
分类号:
S777
DOI:
10.13360/ j.issn.2096-1359.201905041
文献标志码:
A
摘要:
影响木构件钻削功率的因素较多,各因素对其影响程度有待比较。针对上述问题,基于刀具设计理论推导单位体积切削功公式,结合实际生产的需要,试验采用3种密度的木质材料、3种主轴转速、3种进给速度、3种刀具直径和2种结构的刀具,基于高精度功率分析仪测得不同组合下钻削加工的实时功率曲线,并将实时功率曲线与单位体积切削功结合后得到各影响因素对钻削功率的影响规律。结果表明,单位体积切削功与各影响因素之间关系趋势明显,可用于切削参数的选择。采用正交试验法,用单位体积切削功与实时功率曲线的最大值去评定各个影响因素的重要程度。分析结果表明,用切削时的最大功率值评定各个影响因素的重要程度依次为主轴转速>刀具直径>材料种类>刀具结构>进给速度,贡献率分别为37.92%,30.01%,20.03%,1.70%,0.13%; 而用单位体积切削功评定时,依次为材料种类>主轴转速>刀具直径>进给速度>刀具结构,贡献率分别为54.16%,13.75%,12.15%,5.09%,4.57%。最后,讨论了钻削质量与功率的关系,基本试验现象是单位体积切削功越大,试样的灼烧缺陷越严重。在相同加工参数下,密度越大的材料灼烧缺陷越严重; 刀具种类对功率的影响程度较小,但试样的切削质量受刀具结构影响较大。
Abstract:
There are many factors affecting the drilling power of wood structural components, among them, the differences in the types of materials, the tool revolution speed, the feed speed, tool radius, the tool structure, and the processing environment have a great impact on the drilling power consumption. In this study, the influence degree of each factor was compared. Based on the analyses of the mentioned factors, the power of cutting unit-volume mater was deduced according to the tool design theory. Combined with the actual production needs, the test used three densities of wood materials, three spindle revolution speeds, three feed speeds, three tool diameters and two structures of the tool. Based on the Fluke Norma 4000 high-precision power analyzer, the real-time power curves of different combination of drilling processes were measured. The real-time power curves were combined with the power of cutting unit-volume mater to obtain the influence rule of each factor on drilling power. The results showed that the relationship between the power of cutting unit-volume mater and the influencing factors had obvious trend and could be used as a reference for the selection of cutting parameters. Orthogonal test method was used to evaluate the importance of each factor with the maximum value of the real-time power curve and the power of cutting unit-volume mater. The results showed that, for the maximum value, the importance sequence of each factor was as follows: spindle revolution speed > tool diameter > material > tool structure > feed speed, and the contribution rate was 37.92%, 30.01%, 20.03%, 1.70%, 0.13%, respectively. For the power of cutting unit-volume mater, the importance sequence of each factor was as follows: material > spindle revolution speed > tool diameter > feed speed > tool structure, the contribution rate was 54.16%, 13.75%, 12.15%, 5.09%, 4.57%, respectively. Finally, the relationship between drilling quality and power was discussed. The basic test phenomenon was that, the larger the power of cutting unit-volume mater was, the more serious the burning defect of the sample would be. The cutting quality of the sample was greatly affected by the tool structure. The results of this paper can provide theoretical and experimental references for researchers and engineers when carry out relevant practical work in the future.

参考文献/References:

[1] 郭伟, 费本华, 陈恩灵, 等. 我国木结构建筑行业发展现状分析[J]. 木材工业, 2009, 23(2): 19-22. DOI:10.19455/j.mcgy.2009.02.008.
GUO W, FEI B H, CHEN E L, et al. Wood structural construction industry in China[J]. China Wood Industry, 2009, 23(2): 19-22.
[2] 张伟. 木材数控加工中心研究进展[J]. 木材加工机械, 2007, 18(3): 36-38. DOI:10.3969/j.issn.1001-036X.2007.03.010.
ZHANG W. Development of wood CNC machining center[J]. Wood Processing Machinery, 2007, 18(3): 36-38.
[3] 王金鹏, 于炅, 周宏平, 等. 伐竹用V形双圆柱铣刀切割方式研究[J]. 林业工程学报, 2016, 1(6): 124-129. DOI:10.13360/j.issn.2096-1359.2016.06.021.
WANG J P, YU J, ZHOU H P, et al. Research on bamboo cutting mode with double V-type cylindrical helical cutters[J]. Journal of Forestry Engineering, 2016, 1(6): 124-129.
[4] 朱凌云, 高阳. 基于UG的麻花钻螺旋槽曲面数控仿真加工研究[J]. 甘肃农业大学学报, 2013, 48(3): 161-165. DOI:10.13432/j.cnki.jgsau.2013.03.006.
ZHU L Y, GAO Y. Numerical control simulation of helical surface in twist drill based on UG[J]. Journal of Gansu Agricultural University, 2013, 48(3): 161-165.
[5] SHARAPOV E, WANG X P, SMIRNOVA E, et al. Wear behavior of drill bits in wood drilling resistance measurements[J]. Wood and Fiber Science, 2018, 50(2): 154-166. DOI:10.22382/wfs-2018-017.
[6] 蔡力平. 木材切削中木材硬度及密度与切削功率的关系[J]. 东北林学院学报, 1984, 12(2): 156-165. DOI:10.13759/j.cnki.dlxb.1984.02.019.
CAI L P. Relation between the hardness or the density of wood and the cutting power in wood cutting[J]. Jounal of North-eastern Forestry Institute, 1984, 12(2): 156-165.
[7] 鲍旭, 郭晓磊, 曹平祥, 等. 切削厚度与刀具前角对松木切削力与切削温度的影响[J]. 林业工程学报, 2018, 3(6): 117-121. DOI:10.13360/j.issn.2096-1359.2018.06.019.
BAO X, GUO X L, CAO P X, et al. Effects of cutting thickness and rake angle on cutting force and temperature in pine wood[J]. Journal of Forestry Engineering, 2018, 3(6): 117-121.
[8] 曾丽霞, 袁慧, 王成勇, 等. 木质材料切削加工技术研究现状[J]. 工具技术, 2007, 41(5): 5-10. DOI:10.16567/j.cnki.1000-7008.2007.05.002.
ZENG L X, YUAN H, WANG C Y, et al. Research of machining technology for wood-based material[J]. Tool Engineering, 2007, 41(5): 5-10.
[9] 王贤锋, 周磊, 安庆龙, 等. CFRP/Ti叠层钻削力热行为与切屑成形分析[J]. 航空制造技术, 2018(S2): 96-101. DOI:10.16080/j.issn1671-833x.2018.23/24.096.
WANG X F, ZHOU L, AN Q L, et al. Analysis on force-thermal behaviors and chip forming of CFRP/Ti stacks drilling[J]. Aeronautical Manufacturing Technology, 2018(S2): 96-101.
[10] SHAN Y C, LI L, HE N, et al. Predictive modeling and parameter optimization of cutting forces during orbital drilling[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014, 31(5): 521-529. DOI:10.3969/j.issn.1005-1120.2014.05.008.
[11] 李伟光, 张占宽. 基于响应面法的不同锯料角锯齿的木材切削力模型[J]. 浙江农林大学学报, 2018, 35(3): 524-528. DOI:10.11833/j.issn.2095-0756.2018.03.018.
LI W G, ZHANG Z K. Modeling the cutting force in wood sawing with different radial clearance angles based on a response surface methodology[J]. Journal of Zhejiang A&F University, 2018, 35(3): 524-528.
[12] 许美君, 李黎, 罗斌. 杨木磨削力的影响因素及最佳磨削参数研究[J]. 北京林业大学学报, 2015, 37(1): 122-126. DOI:10.13332/j.cnki.jbfu.2015.01.002.
XU M J, LI L, LUO B. Factors affecting sanding force and optimal sanding parameters of Populus[J]. Journal of Beijing Forestry University, 2015, 37(1): 122-126.
[13] 应俊华, 成锋, 张健, 等. 磨削参数对木材砂带磨削能耗的影响[J]. 林业工程学报, 2019, 4(3): 38-45. DOI:10.13360/j.issn.2096-1359.2019.03.006.
YING J H, CHENG F, ZHANG J, et al. Effect of sanding parameters on energy consumption in wood belt sanding[J]. Journal of Forestry Engineering, 2019, 4(3): 38-45.
[14] 王解军, 屈波, 王智丰, 等. 胶合木拱桥静力性能全桥模型试验与数值分析研究[J]. 中南林业科技大学学报, 2018, 38(8): 109-115. DOI:10.14067/j.cnki.1673-923x.2018.08.017.
WANG J J, QU B, WANG Z F, et al. Study of full-bridge model test and numerical analysis of static performance[J]. Journal of Central South University of Forestry & Technology, 2018, 38(8): 109-115.

备注/Memo

备注/Memo:
收稿日期:2019-05-25 修回日期:2019-09-16
基金项目:中央级公益性科研院所基本科研业务费专项资金重点项目(CAFYBB2018ZB011、CAFYBB2017ZX003-5); 国家自然科学基金(31670721)。
作者简介:吴雨生,男,研究方向为机械设计及其信息化。通信作者:张伟,男,研究员。E-mail:zwei611@hotmail.com
更新日期/Last Update: 2020-03-10