[1]魏鑫,陈复明,王戈*.基于弯曲挺度法的缠绕用薄竹篾柔性表征[J].林业工程学报,2020,5(02):48-53.[doi:10.13360/ j.issn.2096-1359.201905046]
 WEI Xin,CHEN Fuming,WANG Ge*.Flexibility characterization of bamboo slivers through winding-based bending stiffenss method[J].Journal of Forestry Engineering,2020,5(02):48-53.[doi:10.13360/ j.issn.2096-1359.201905046]





Flexibility characterization of bamboo slivers through winding-based bending stiffenss method
1.国际竹藤中心,北京 100102; 2.国家林业和草原局/北京市共建竹藤科学与技术重点实验室,北京 100102
WEI Xin12 CHEN Fuming1 WANG Ge1*
1. International Center for Bamboo and Rattan, Beijing 100102, China; 2. National Forestry and Grassland Administration Key Laboratory of Bamboo and Rattan Science & Technology, Beijing 100102, China
弯曲挺度法 竹材柔性 维管束梯度结构 竹缠绕复合材料 木射线组织
bending stiffenss method bamboo flexibility vascular bundle gradient structure bamboo-based winding composite wood ray tissue
10.13360/ j.issn.2096-1359.201905046
利用竹材的高柔性制造的竹缠绕复合材料是竹材创新利用的革命性产品。深入研究竹材柔性表征方法、评价指标和内在机理可为定向仿生制备高性能竹缠绕复合材料和优化竹缠绕管道工艺提供理论指导。探索弯曲挺度法表征缠绕用薄竹篾柔性的适用性,比较竹材维管束梯度结构和木材木射线组织微观结构差异对竹、木材柔性的影响机制。结果表明:弯曲挺度法适用于缠绕用薄竹篾的柔性表征,该法可快速、准确地获得不同竹篾薄层的柔度。适宜的测试条件为:跨厚比不小于100,加载角速率为600~1 800(°)/min。竹材柔性具有梯度性:从竹黄到竹青,随着纤维比量增加,竹篾(50 mm×5 mm×1 mm)柔度从2.92×10-3 mN-1·m-1降低至1.07×10-3 mN-1·m-1,竹材柔性降低。利用混合定律获得竹材维管束和薄壁细胞的弯曲模量和柔度(厚1 mm)理论值分别为0.365 GPa、28.82 GPa和3.284×10-2 mN-1·m-1、0.42×10-3 mN-1·m-1。在相同含水率、尺寸和密度下,竹、木材比柔度排序为竹黄侧>竹青侧>木材,木材柔性低是横向木射线组织限制其柔性变形所引起的。
Bamboo-based winding composites(BWCs)made of bamboo with high flexibility are the revolutionary products for the innovative utilization in the forestry industry in China. In-depth study of the characterization methods of bamboo flexibility, evaluation indicators and internal mechanisms can provide theoretical guidance for the directional bionic preparation of high-performance bamboo-based winding composites and optimization of the winding process. The bending stiffenss method was used to characterize the flexibility of bamboo slivers, which can compare test conditions, such as loading angular rate(ω)and span thickness ratio(l/h), and the influence mechanism on the flexibility, between bamboo gradient structure of vascular bundles and wood ray microstructure. The results showed that the bending stiffenss method was suitable for the flexible characterization of bamboo slivers. This method could quickly and accurately examine the bamboo flexibility of different layers. The test conditions were l/h≥100 and ω was 600-1 800(°)/min. The flexibility of bamboo had properties of gradient flexibility: from inner to outer parts, the flexibility of bamboo decreased as the fiber ratio increased. The theoretical values of flexural modulus and flexibility(thickness of 1 mm)of vascular bundles and parenchyma cells obtained by the mixing law were 0.365 GPa, 28.82 GPa and 3.284×10-2 mN-1·m-1, 0.42×10-3 mN-1·m-1, respectively. The flexible slivers prepared from the bamboo inner layer were used to wind to the inner layers of the BWCs, while the rigid bamboo outer layer was used to wind the outer layer of the pipe. This combination of soft inner and rigid outer layers helped to prepare wood plastic composites and optimize the processing of the pipe structure with its structural bionics purposes. Under the same water content, size and density, the order of specific flexibility of bamboo and wood was: bamboo inner layer > bamboo outer layer > wood. The low flexibility of wood was caused because its flexible deformation was limited by the lateral wood ray tissues. This advantage means that bamboo is one of the alternatives to wood for the preparation of BWCs and the range of bamboo utilization can be extended.


[1] 王戈, 邓健超, 陈复明, 等. 竹缠绕复合压力管的研究与开发[J]. 林业科学, 2016, 52(4): 127-132. DOI: 10.11707/j.1001-7488.20160415.
WANG G, DENG J C, CHEN F M, et al. Exploitation and application of bamboo fiber-reinforced filament-wound pressure pipe[J]. Scientia Silvae Sinicae, 2016, 52(4): 127-132.
[2] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1): 2-7. DOI: 10.13360/j.issn.2096-1359.2016.01.001.
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. Journal of Forestry Engineering, 2016, 1(1): 2-7.
[3] HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms[J]. Acta Biomaterialia, 2015, 16: 178-186. DOI: 10.1016/j.actbio.2015.01.038.
[4] OBATAYA E, KITIN P, YAMAUCHI H. Bending characteristics of bamboo(Phyllostachys pubescens)with respect to its fiber-foam composite structure[J]. Wood Science and Technology, 2007, 41(5): 385-400. DOI: 10.1007/s00226-007-0127-8.
[5] LOW I M, CHE Z Y, LATELLA B A. Mapping the structure, composition and mechanical properties of bamboo[J]. Journal of Materials Research, 2006, 21(8): 1969-1976. DOI: 10.1557/jmr.2006.0238.
[6] LIU H R, JIANG Z H, FEI B H, et al. Tensile behaviour and fracture mechanism of moso bamboo(Phyllostachys pubescens)[J]. Holzforschung, 2015, 69(1): 47-52. DOI: 10.1515/hf-2013-0220.
[7] WANG F L, SHAO Z P, WU Y J. Mode II interlaminar fracture properties of moso bamboo[J]. Composites Part B: Engineering, 2013, 44(1): 242-247. DOI:10.1016/j.compositesb.2012.05.035.
[8] 安晓静, 余雁. 竹材断裂特性研究进展[J]. 世界林业研究, 2013, 26(3): 70-73. DOI: 10.13348/j.cnki.sjlyyj.2013.03.004.
AN X J, YU Y. Research progress of bamboo fracture property[J]. World Forestry Research, 2013,26(3): 70-73.
[9] AN Y L, LIU Z M, WANG G, et al. Three-point bending fracture behaviors of bamboo[J]. Advanced Materials Research, 2011, 261/262/263: 464-468. DOI:10.4028/www.scientific.net/amr.261-263.464.
[10] BABIAK M, GAFF M, SIKORA A, et al. Modulus of elasticity in three- and four-point bending of wood[J]. Composite Structures, 2018, 204: 454-465. DOI: 10.1016/j.compstruct.2018.07.113.
[11] AUCH M D J, SOO O K, EWALD G, et al. Ultrathin glass for flexible OLED application[J]. Thin Solid Films, 2002, 417(1/2): 47-50. DOI: 10.1016/s0040-6090(02)00647-8.
[12] FISCHER W J, HIRN U, BAUER W, et al. Testing of individual fiber-fiber joints under biaxial load and simultaneous analysis of deformation[J]. Nordic Pulp & Paper Research Journal, 2012, 27(2): 237-244. DOI: 10.3183/npprj-2012-27-02-p237-244.
[13] YANG L P, RAZA A, SI Y, et al. Synthesis of superhydrophobic silica nanofibrous membranes with robust thermal stability and flexibility via in situ polymerization[J]. Nanoscale, 2012, 4(20): 6581. DOI: 10.1039/c2nr32095a.
[14] 孙丰文, 李燕文, 张齐生. 竹材复合板的试件尺寸对静曲强度及弹性模量测试值的影响[J]. 林产工业, 1998, 25(4): 4-5. DOI: 10.1017/S0266078400010713.
SUN F W, LI Y W, ZHANG Q S. Effects of test pieces' size of bamboo composite board on test values of MOR and MOE[J]. China Forest Products Industry, 1998, 25(4): 4-5.
[15] 袁辉, 温卫东, 崔海涛, 等. 三点弯曲试验弯剪耦合效应分析及测试结果修正方法[J]. 复合材料学报, 2009, 26(1): 190-195. DOI: 10.13801/j.cnki.fhclxb.2009.01.032.
YUAN H, WEN W D, CUI H T,et al. Coupling effect and its correction on experimental results of three-point bend[J]. Acta Materiae Compositae Sinica, 2009, 26(1): 190-195.
[16] AMADA S, ICHIKAWA Y, MUNEKATA T, et al. Fiber texture and mechanical graded structure of bamboo[J]. Composites Part B: Engineering, 1997, 28(1/2): 13-20. DOI: 10.1016/S1359-8368(96)00020-0.


收稿日期:2019-05-31 修回日期:2019-07-18
更新日期/Last Update: 2020-03-10