[1]吴丹妮,孙萍,郑妮华,等.胶合板用镁质胶黏剂的制备与性能表征[J].林业工程学报,2020,5(02):54-61.[doi:10.13360/ j.issn.2096-1359.201908016]
 WU Danni,SUN Ping,ZHENG Nihua,et al.Preparation and performance characterization of magnesium adhesive for plywood[J].Journal of Forestry Engineering,2020,5(02):54-61.[doi:10.13360/ j.issn.2096-1359.201908016]
点击复制

胶合板用镁质胶黏剂的制备与性能表征()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
54-61
栏目:
木材科学与技术
出版日期:
2020-03-11

文章信息/Info

Title:
Preparation and performance characterization of magnesium adhesive for plywood
文章编号:
2096-1359(2020)02-0054-08
作者:
吴丹妮1孙萍1郑妮华1刘红光1李黎1牛耕芜2*
1. 北京林业大学材料科学与技术学院,北京 100083; 2. 内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018
Author(s):
WU Danni1 SUN Ping1 ZHENG Nihua1 LIU Hongguang1 LI Li1 NIU Gengwu2*
1. College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China; 2. School of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
关键词:
镁质胶黏剂 胶合板 胶合强度 热稳定性 阻燃性能
Keywords:
magnesium adhesive plywood bonding strength thermal stability flame retardancy
分类号:
S781
DOI:
10.13360/ j.issn.2096-1359.201908016
文献标志码:
A
摘要:
为解决醛系合成树脂胶黏剂甲醛释放、热稳定性差和阻燃效果较差的难题,探讨了一种功能叠加型无机镁质胶黏剂的制备技术,以期替代醛类合成树脂胶黏剂在木材工业上的使用。本研究中镁质胶黏剂的优化配方为n(MgO)/n(MgCl2)=6,n(H2O)/n(MgCl2)=16,胶合板制备工艺为施胶量700 g/m2(双面),冷压时间28 h,养护时间15 d。试验结果显示,养护天数对镁质胶黏剂制备胶合板胶合强度的影响最显著。当养护天数为3~19 d时,胶合板的干、湿胶合强度均呈现先增大后下降的趋势,13 d时干、湿胶合强度均达到峰值,干、湿胶合强度分别为1.40和1.08 MPa。通过对胶合板剪切破坏界面进行扫描电镜观察发现,镁质胶黏剂渗透到木材孔隙中形成了胶钉,产生了机械咬合结构。利用热重分析仪和锥形量热仪等对镁质胶黏剂的热稳定性和燃烧性能进行了测试,结果表明,镁质胶黏剂在本研究温度范围(30~800 ℃)内的总质量损失率为48%。在50 kW/m2的热辐射功率下,镁质胶黏剂制备胶合板的平均热释放速率(HRR)为35.84 kW/m2,总热释放量(THR)为20.97 MJ/m2。与普通酚醛树脂胶黏剂相比,镁质胶黏剂具有较好的热稳定性和阻燃性能。
Abstract:
The aldehyde adhesive commonly used in plywood industry has some obvious drawbacks such as high formaldehyde release, poor thermal stability and low flame retardancy. This study discussed the preparation technology for a kind of functional superimposed inorganic magnesium adhesive, which was environmentally friendly, high temperature resistant, fireproof and anti-aging to replace the use of aldehyde organic adhesives. In this study, the optimized formulation of magnesium adhesive and manufacturing parameters of plywood were obtained through the orthogonal test and the results were as follows: n(MgO)/n(MgCl2)=6, n(H2O)/n(MgCl2)=16, the adhesive consumption was 700 g/m2(both sides), the cold-pressing time was 28 h, and the curing day was 15 d. The variance analysis results showed that the curing day had the most significant effect on the bonding strength of the plywood manufactured with magnesium adhesive. The single factor test was used to further investigate the effect of curing days on the properties of magnesium adhesive. The results showed that when the range of curing days was between 3 d and 19 d, both the dry bonding strength and wet bonding strength of plywood firstly increased and then decreased. At 13 d, the dry and wet bonding strengths reached peak values of 1.40 MPa and 1.08 MPa, respectively. However, the water resistance decreased with the increase of curing days. Through the observation of the shear failure interface of plywood by the scanning electron microscope, it was found that the magnesium adhesive penetrated the pores of wood and formed the adhesive nail, generating mechanical occlusion. When the formulation of magnesium adhesive and manufacturing parameters were reasonable, the bonding strength between wood and magnesium adhesive was larger than the tensile strength of wood. The thermal stability of magnesium adhesive was examined by the thermogravimetric analyzer. The analysis showed that the total mass loss rate of magnesium adhesive was 48% in the studied temperature range(30-800 ℃). The combustion properties of magnesium adhesive manufactured plywood were tested by the cone calorimeter. Under the thermal radiation power of 50 kW/m2, the average heat release rate(HRR)of plywood was 35.84 kW/m2, and the total heat release(THR)was 20.97 MJ/m2. The above results proved the superiority of magnesium adhesive compared with the traditional phenolic adhesives in terms of thermal stability and flame retardancy. The results of this study can provide theoretical guidance for the manufacturing of magnesium adhesive plywood.

参考文献/References:

[1] 张伟, 高强, 秦志勇, 等. 我国木材工业用胶黏剂研究与应用现状及发展趋势[J]. 中国人造板, 2014, 21(3): 8-12.
ZHANG W, GAO Q, QIN Z Y, et al. Research and development of wood adhesive in China[J]. China Wood-Based Panels, 2014, 21(3): 8-12.
[2] 马慧, 关博文, 王永维, 等. 氯氧镁水泥胶凝材料的研究进展[J]. 材料导报, 2015, 29(15): 103-107. DOI:10.11896/j.issn.1005-023X.2015.015.019
MA H, GUAN B W, WANG Y W, et al. Research progress of magnesium oxychloride cement gelled material[J]. Materials Review, 2015, 29(15): 103-107.
[3] 吴金焱, 朱书全. 氯氧镁水泥及其制品的研发进展[J]. 中国非金属矿工业导刊, 2006(1): 15-18. DOI:10.3969/j.issn.1007-9386.2006.01.004.
WU J Y, ZHU S Q. The development of magnesium oxychloride cement and its products[J]. China Non-Metallic Mining Industry Herald, 2006(1): 15-18.
[4] WEN J, YU H F, LI Y, et al. Effects of H3PO4 and Ca(H2PO4)2 on mechanical properties and water resistance of thermally decomposed magnesium oxychloride cement[J]. Journal of Central South University, 2013, 20(12): 3729-3735. DOI:10.1007/s11771-013-1901-4.
[5] 张翠苗, 杨红健, 马学景. 氯氧镁水泥的研究进展[J]. 硅酸盐通报, 2014, 33(1): 117-121. DOI:10.16552/j.cnki.issn1001-1625.2014.01.016.
ZHANG C M, YANG H J, MA X J. Research progress of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 117-121.
[6] 汤婷, 张俊计, 周慧, 等. MgO的活性及原料配比对氯氧镁水泥结构的影响[J]. 大连交通大学学报, 2014, 35(5): 69-73. DOI:10.13291/j.cnki.djdxac.2014.05.017.
TANG T, ZHANG J J, ZHOU H, et al. Effect of raw materials ratio on magnesium oxychloride cement[J]. Journal of Dalian Jiaotong University, 2014, 35(5): 69-73.
[7] WEN J, YU H F, XIAO X Y, et al. Influence of materials ratio on the hydration process of magnesium oxychloride cement[J]. Materials Science Forum, 2015, 817: 180-184. DOI:10.4028/www.scientific.net/msf.817.180.
[8] HUANG L L, WANG H Y, GUO X L, et al. Study on continuous cold-pressing technology of engineered wood flooring with EPI adhesive[J]. Wood Research, 2018, 63(2): 335-342.
[9] XU B W, MA H Y, HU C L, et al. Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites[J]. Construction and Building Materials, 2016, 102: 613-619. DOI:10.1016/j.conbuildmat.2015.10.205.
[10] MATKOVIC' B, POPOVIC' S, ROGIC' V, et al. Reaction products in magnesium oxychloride cement pastes. System MgO-MgCl2-H2O[J]. Journal of the American Ceramic Society, 1977, 60(11/12): 504-507. DOI:10.1111/j.1151-2916.1977.tb14093.x.
[11] 文静, 余红发, 吴成友, 等. 氯氧镁水泥水化历程的影响因素及水化动力学[J]. 硅酸盐学报, 2013, 41(5): 588-596. DOI:10.7521/j.issn.0454-5648.2013.05.03.
WEN J, YU H F, WU C Y, et al. Hydration kinetic and influencing parameters in hydration process of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(5): 588-596.
[12] 杨少明, 佟利辉, 杨红健, 等. 养护方式对氯氧镁水泥力学性能的影响[J]. 硅酸盐通报, 2018, 37(3): 1059-1065. DOI:10.16552/j.cnki.issn1001-1625.2018.03.050.
YANG S M, TONG L H, YANG H J, et al.Influence of curing regimes on mechanical properties of magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(3): 1059-1065.
[13] 蒋述兴. 复合型氯氧镁水泥的水化相及其显微特征研究[J]. 非金属矿, 2011, 34(5): 42-44.
JIANG S X. Study on hydration phase and microscopic characteristic of the composite magnesium oxychloride cement[J]. Non-Metallic Mines, 2011, 34(5): 42-44.
[14] 张勇, 杨虎, 郑超, 等. 氯氧镁水泥热分解过程的研究[J]. 武汉工程大学学报, 2009, 31(7): 81-83.
ZHANG Y, YANG H,ZHENG C, et al. Study on thermal decomposition of magnesium oxychloride cement[J]. Journal of Wuhan Institute of Technology, 2009, 31(7): 81-83.
[15] 黄志雄, 赵颖, 秦麟卿, 等. 氯氧镁水泥的制备及其热分解机理[J]. 武汉理工大学学报, 2008, 30(10): 39-42.
HUANG Z X, ZHAO Y, QIN L Q, et al. Preparation and thermal decomposition mechanism of magnesium oxychloride cement[J]. Journal of Wuhan University of Technology, 2008, 30(10): 39-42.
[16] 陈旬, 袁利萍, 胡云楚, 等. 两种锰化合物对木材阻燃抑烟作用的比较研究[J]. 功能材料, 2014, 45(11): 11076-11080. DOI:10.3969/j.issn.1001-9731.2014.11.016.
CHEN X, YUAN L P, HU Y C, et al. Comparative study on the flame retarding and smoke suppressing properties of wood treated by manganese compounds[J]. Journal of Functional Materials, 2014, 45(11): 11076-11080.
[17] 易佳楠, 吴义强, 张新荔, 等. 胶合板用硅镁系环保无机胶黏剂制备与阻燃性能研究[J]. 林产工业, 2015, 42(6): 34-37. DOI:10.19531/j.issn1001-5299.2015.06.010.
YI J N, WU Y Q, ZHANG X L, et al. Preparation and properties of Si-Mg-based inorganic and environmental adhesive for plywood[J]. China Forest Products Industry, 2015, 42(6): 34-37.

相似文献/References:

[1]周秉亮,刘秀娟,陈玲,等.阻尼抗振型PCB用覆铜胶合板的介电特性[J].林业工程学报,2015,29(02):78.[doi:10.13360/j.issn.1000-8101.2015.02.019]
 ZHOU Bingliang,LIU Xiujuan,CHEN Ling,et al.Dielectric properties of copper overlaid vibration damping plywood used for printed circuit board[J].Journal of Forestry Engineering,2015,29(02):78.[doi:10.13360/j.issn.1000-8101.2015.02.019]
[2]王书强,牛帅红,金敏,等.薄竹单板浸渍工艺对阻燃胶合板性能的影响[J].林业工程学报,2015,29(02):95.[doi:10.13360/j.issn.1000-8101.2015.02.023]
 WANG Shuqiang,NIU Shuaihong,JIN Min,et al.Effects of fire retardant impregnation on properties of bamboo plywood[J].Journal of Forestry Engineering,2015,29(02):95.[doi:10.13360/j.issn.1000-8101.2015.02.023]
[3]常馨曼,关明杰*.炭化处理对杨木单板及胶合板物理力学性能的影响[J].林业工程学报,2015,29(06):123.[doi:10.13360/j.issn.1000-8101.2015.06.031]
 CHANG Xinman,GUAN Mingjie.Influence of carbonization treatment on physical and mechanical properties of poplar veneer and plywood[J].Journal of Forestry Engineering,2015,29(02):123.[doi:10.13360/j.issn.1000-8101.2015.06.031]
[4]关明杰,常馨曼,薛明慧,等.炭化杨木单板制备胶合板的氧指数和热重分析[J].林业工程学报,2016,1(02):17.[doi:10.13360/j.issn.2096-1359.2016.02.003]
 GUAN Mingjie,CHANG Xinman,XUE Minghui,et al.Oxygen index and thermalgravimetric analysis of poplar plywood by carbonized veneer[J].Journal of Forestry Engineering,2016,1(02):17.[doi:10.13360/j.issn.2096-1359.2016.02.003]
[5]朱兆龙,郭晓磊*,赵飞,等.陶瓷刀具车削木质复合材料的切削性能[J].林业工程学报,2017,2(01):119.[doi:10.13360/j.issn.2096-1359.2017.01.021]
 ZHU Zhaolong,GUO Xiaolei*,ZHAO Fei,et al.Cutting performance of ceramic tool in turning wood-based composites[J].Journal of Forestry Engineering,2017,2(02):119.[doi:10.13360/j.issn.2096-1359.2017.01.021]
[6]崔举庆,谢明君,杨苏,等.二乙二醇醚增韧改性三聚氰胺-尿素-甲醛树脂的性能[J].林业工程学报,2017,2(06):10.[doi:10.13360/j.issn.2096-1359.2017.06.002]
 CUI Juqing,XIE Mingjun,YANG Su,et al.Properties of diethylene glycol ether toughening modified melamine-urea-formaldehyde resin[J].Journal of Forestry Engineering,2017,2(02):10.[doi:10.13360/j.issn.2096-1359.2017.06.002]
[7]NGUYEN Thiphuong,陈卫民,曹倚中,等.等离子体处理对高温干燥杨木单板表面性能的影响[J].林业工程学报,2017,2(06):15.[doi:10.13360/j.issn.2096-1359.2017.06.003]
 NGUYEN Thiphuong,CHEN Weimin,CAO Yizhong,et al.Effect of plasma treatment on surface properties of high temperature dried poplar veneers[J].Journal of Forestry Engineering,2017,2(02):15.[doi:10.13360/j.issn.2096-1359.2017.06.003]
[8]刘晓辉.热塑性树脂胶合板板坯热压过程中影响温度变化的主要因素[J].林业工程学报,2018,3(02):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]
 LIU Xiaohui.The main factors affecting temperature change of mat during the manufacturing process of thermoplastic resin plywood[J].Journal of Forestry Engineering,2018,3(02):35.[doi:10.13360/j.issn.2096-1359.2018.02.006]
[9]鞠泽辉,林杨帆△,何倩,等.基于木材微观特性的胶合板隔声量模拟[J].林业工程学报,2018,3(03):42.[doi:10.13360/j.Issn.2096-1359.2018.03.007]
 JU Zehui,LIN Yangfan,HE Qian,et al.Simulation of plywood sound insulation based on wood anatomical characteristic[J].Journal of Forestry Engineering,2018,3(02):42.[doi:10.13360/j.Issn.2096-1359.2018.03.007]

备注/Memo

备注/Memo:
收稿日期:2019-08-20 修回日期:2019-09-20
基金项目:中央高校基本科研业务费专项基金(2017JC11); 国家自然科学基金(31770602)。
作者简介:吴丹妮,女,研究方向为木质复合材料与胶黏剂。通信作者:牛耕芜,男,副教授。E-mail:niugw@163.com
更新日期/Last Update: 2020-03-10