[1]白舒扬,韩晨阳,倪忠进*,等.聚乙二醇对表面改性CNF/PLA复合材料性能的影响[J].林业工程学报,2020,5(02):62-68.[doi:10.13360/ j.issn.2096-1359.201906031]
 BAI Shuyang,HAN Chenyang,NI Zhongjin*,et al.Effect of polyethylene glycol(PEG)on properties of the surface modified cellulose nanofiber(CNF)/polylactic acid(PLA)composite[J].Journal of Forestry Engineering,2020,5(02):62-68.[doi:10.13360/ j.issn.2096-1359.201906031]
点击复制

聚乙二醇对表面改性CNF/PLA复合材料性能的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
62-68
栏目:
木材科学与技术
出版日期:
2020-03-11

文章信息/Info

Title:
Effect of polyethylene glycol(PEG)on properties of the surface modified cellulose nanofiber(CNF)/polylactic acid(PLA)composite
文章编号:
2096-1359(2020)02-0062-07
作者:
白舒扬1韩晨阳1倪忠进1*倪益华1吕艳1叶晓平2
1.浙江农林大学工程学院,杭州 311300; 2.浙江省特色文创产品数字化设计与智能制造重点实验室,浙江 丽水 323000
Author(s):
BAI Shuyang1 HAN Chenyang1 NI Zhongjin1* NI Yihua1 LYU Yan1 YE Xiaoping2
Zhejiang Agriculture & Forestry university, School of Engineering, Hangzhou 311300, China; 2.Zhejiang key Laboratory of Digital and Intelligent Manufacturing of Civilization and Creation Products, Lishui 323000, Zhejiang, China
关键词:
聚乳酸 聚乙二醇 纳米纤维素 表面界面 复合材料
Keywords:
polylactic acid(PLA) plasticizer CNF interface composite
分类号:
TH145.44+2
DOI:
10.13360/ j.issn.2096-1359.201906031
文献标志码:
A
摘要:
目前,溶液浇铸法制备纳米纤维素/聚乳酸复合材料,常将纳米纤维素直接加入聚乳酸,导致制备的复合材料各项机械性能普遍降低。为了改善其机械性能,笔者采用聚乙二醇2000作为塑化剂处理纳米纤维素,制备聚乳酸/纳米纤维素/聚乙二醇三相复合材料。通过对复合材料的微观形貌观测,力学性能分析和热稳定性分析来确定聚乙二醇的影响机制。试验结果表明,添加2%~4%聚乙二醇2000的三相复合材料的拉伸强度、撕裂强度与断裂伸长率得到了提高,材料的热稳定性相对纯聚乳酸发生了下降。而随着聚乙二醇含量逐渐增加至8%,材料的拉伸强度、撕裂强度与断裂伸长率都出现了降低,而其热稳定性回升,复合材料的玻璃化转化温度(TG)大约提升了5~6 ℃。同时,研究发现保持一定的聚乙二醇/纳米纤维素添加比例可获得分散均匀、性能优良的复合材料,团聚现象明显减少。综上,经过一定量的聚乙二醇2000表面改性可促进纳米纤维素在聚乳酸中的均匀分散,从而增强复合材料的综合机械性能。
Abstract:
The cellulose nanofiber(CNF)is a nonpolluting natural material, which is always used for enhancing the properties of composite materials. PLA(Polylactic acid)is a polymer material, which can be a basic material for preparing plate, film and 3d printing products. Aiming at preparing a composite material with excellent properties, the CNF/PLA composites were prepared through the solution casting method with PLA as the matrix and CNF as the enhanced component. Comparing to neat PLA, the composite prepared by mixing CNF and PLA directly had some drawbacks, such as low strength and high brittleness. Through the micro-morphology observation, the agglomeration and the bad dispersion condition of CNF were the mainly incentive of this phenomenon. In order to reduce the agglomeration of CNF and enhance the mechanical properties of CNF/PLA composite, the polyethylene glycol(PEG)2000 was used as a plasticizer to modify CNF and the composite with three components, i.e., CNF, PEG2000, and PLA, were prepared by adding PEG2000 into CNF suspension, then mixing the modified CNF system with the PLA system both with the DCM as the solvent. The micro-morphology, mechanical properties, thermal stability were examined to figure out the modification mechanism of PEG acting on the CNF and PLA. The tensile strength and elongation at break were enhanced due to the improved dispersion condition of CNF and the plasticity was improved with the addition of 2%-4% PEG2000. A uniform and firm surface morphology between PLA and CNF were discovered through the SEM examination. The thermal stability was decreased due to the plasticity effect of PEG2000 acting on PLA. During the experiment, it was found that, with the content of PEG increasing to 6%-8%, the mechanical properties became worse compared to neat PLA and this phenomenon has not been reported in the previous research. Some obvious cracks between PLA and CNF were observed through micro morphology images and the thermal stability had a certain enhancement. Meanwhile, the tear resistance properties illustrated a similar trend with the tensile properties of the composites. At the same time, the relationship between the PEG and the increasing content of CNF and its agglomeration phenomenon was tested. It was found that a certain ratio of PEG/CNF could achieve a composite material with better performance, and the agglomeration phenomenon was significantly reduced. Through those analyses of the results, it was demonstrated that a certain amount of PEG would promote the dispersion of CNF and accelerate the molecular movement of PLA, which led to the enhancement of mechanical properties. The over-acceleration of molecular movement and the expanded PLA molecular gap caused by the excess PEG would do harm to the combing condition of CNF and PLA, as well as the mechanical properties of PLA itself. In conclusion, only by controlling the amount of PEG, the CNF/PLA composite with perfect properties could be achieved. In this research, both the enhancement and the weakened effect of PEG on the PLA/CNF composites were discussed.

参考文献/References:

[1] PHILIPPE T, TANJA Z, FRANCISCO L S. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid)and acetylated microfibrillated cellulose[J]. Biomacromolecules, 2010, 11(2): 454-464. DOI:10.1021/bm901186u.
[2] SIRÓ I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose, 2010, 17(3): 459-494. DOI:10.1007/s10570-010-9405-y.
[3] RAQUEZ J M, HABIBI Y, MURARIU M, et al. Polylactide(PLA)-based nanocomposites[J]. Progress in Polymer Science, 2013, 38(10/11): 1504-1542. DOI:10.1016/j.progpolymsci.2013.05.014.
[4] VAN DEN OEVER M J A, BECK B, MÜSSIG J. Agrofibre reinforced poly(lactic acid)composites: effect of moisture on degradation and mechanical properties[J]. Composites Part A, 2010, 41(11): 1628-1635. DOI:10.1016/j.compositesa.2010.07.011.
[5] CHIENG B W, IBRAHIM N A, WAN YUNUS W M Z, et al. Plasticized poly(lactic acid)with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties[J]. Journal of Applied Polymer Science, 2013, 130(6): 4576-4580. DOI:10.1002/app.39742.
[6] 邓艳丽, 杨斌, 苗继斌, 等. 聚乳酸增韧研究进展[J].化工进展, 2015, 34(11): 3975-3978. DOI:10.16085/j.issn.1000-6613.2015.11.023.
DENG Y L, YANG B, MIAO J B, et al. Research progress in the toughening modification of polylactic acid[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3975-3978.
[7] GORDOBIL O, EGÜÉS I, et al. Physicochemical properties of PLA lignin blends[J]. Polymer Degradation & Stability, 2014, 108: 330-338. DOI:10.1016/j.polymdegradstab.2014.01.002.
[8] JAMSHIDIAN M, TEHRANY E A, IMRAN M, et al. Poly-lactic acid: production, applications, nanocomposites, and release studies[J]. Comprehensive Reviews in Food Science & Food Safety, 2010, 9(5): 552-571. DOI:10.1111/j.1541-4337.2010.00126.x.
[9] JONOOBI M, HARUN J, MATHEW A P, et al. Mechanical properties of cellulose nanofiber(CNF)reinforced polylactic acid(PLA)prepared by twin screw extrusion[J].Composites Science & Technology, 2010, 70(12): 1742-1747. DOI:10.1016/j.compscitech.2010.07.005.
[10] KIDD T F A, FRITCH B, et al. Nanocellulose composite materials synthesizes with ultrasonic agitation[C]. APS March Meeting 2016. American Physical Society, 2016.
[11] 黄彪, 卢麒麟, 唐丽荣. 纳米纤维素的制备及应用研究进展[J]. 林业工程学报, 2016, 1(5): 1-9. DOI:10.13360/j.issn.2096-1359.2016.05.001.
HUANG B, LU Q L, TANG L R. Research progress of nanocellulose manufacture and application[J]. Journal of Forestry Engineering, 2016, 1(5): 1-9.
[12] 潘刚伟, 侯秀良, 朱澍, 等. 用于复合材料的小麦秸秆纤维性能及制备工艺[J]. 农业工程学报, 2012, 28(9): 287-292. DOI:10.3969/j.issn.1002-6819.2012.09.047.
PAN G W, HOU X L, ZHU P, et al. Preparation and properties of wheat straw fibers for composites[J]. Transactions of Chinese Society of Agricultural Engineering, 2012, 28(9): 287-292.
[13] TOMÉ L C, PINTO R J B, TROVATTI E, et al. Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid)through a simple approach[J]. Green Chemistry, 2011, 13(2): 419-427. DOI:10.1039/C0GC00545B.
[14] 龚新怀, 辛梅华, 李明春, 等. 增容剂改善茶粉/聚乳酸生物质复合材料性能[J]. 农业工程学报, 2017, 33(2): 308-314. DOI:10.11975/j.issn.1002-6819.2017.02.043.
GONG X H, XIN M H, LI M C, et al. Compatibilizer improving properties of tea dust/polylactic acid biomass composites[J]. Transactions of Chinese Society of Agricultural Engineering, 2017, 33(2): 308-314.
[15] 曲萍, 高源, 白露, 等. 聚乙二醇增容纳米纤维素/聚乳酸共混体系的研究[J]. 功能材料, 2011, 42(S1):69-72.
QU P, GAO Y, BAI L, et al. Compatibilization of nano cellulose whiskers/poly(lactic acid)blends with PEG[J]. Jorunal of Functional Materials, 2011, 42(S1): 69-72.
[16] ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116(16): 9305-9374. DOI:10.1021/acs.chemrev.6b00225.
[17] 吴清林, 梅长彤, 韩景泉, 等. 纳米纤维素制备技术及产业化现状[J]. 林业工程学报, 2018, 3(1): 1-9. DOI:10.13360/j.issn.2096-1359.2018.01.001.
WU Q L, MEI C T, HAN J Q, et al. Preparation technology and industrialization status of nanocellulose[J]. Journal of Forestry Engineering, 2018, 3(1): 1-9.
[18] SAFDARI F, CARREAU P J, HEUZEY M C, et al. Effects of poly(ethylene glycol)on the morphology and properties of biocomposites based on polylactide and cellulose nanofibers[J]. Cellulose, 2017, 24(7): 2877-2893. DOI:10.1007/s10570-017-1327-5.
[19] 杨龙, 左迎峰, 顾继友, 等. 不同增容剂对木粉/聚乳酸复合材料性能的影响[J]. 高分子材料科学与工程, 2014, 30(8): 91-95. DOI:10.16865/j.cnki.1000-7555.2014.08.019.
YANG L, ZUO Y F, GU J Y, et al. Effect of different compatibilizers on properties of wood flour/polylactic acid composite[J]. Polymer Materials Science and Engineering, 2014, 30(8):91-95.
[20] 蒋仙友, 张雅娟, 汪济奎, 等. 纳米纤维素晶须与聚烯烃弹性体协同增韧增强聚丙烯三元复合材料性能研究[J]. 林业工程学报, 2018, 3(1): 89-96. DOI:10.13360/j.issn.2096-1359.2018.01.015.
JIANG X Y, ZHANG Y J, WANG J K, et al. Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE[J]. Journal of Forestry Engineering, 2018, 3(1): 89-96.
[21] 周威, 李晓梅, 蒋涛, 等. PLA/ATBC增塑改性体系结晶热性能及耐老化性能的研究[J]. 湖北大学学报(自科版), 2009, 31(4): 398-402. DOI:CNKI:SUN:HDZK.0.2009-04-018.
ZHOU W, LI X M, JIANG T, et al. Study on thermal behavior, crystalline property and anti-aging performance of PLA/ATBC plastication[J]. Journal of Hubei University(Natural Science), 2009, 31(4): 398-402.
[22] 左迎峰, 李文豪, 李萍, 等. 竹纤维/聚乳酸可降解复合材料的增塑改性[J]. 林业工程学报, 2018(1): 77-82. DOI:10.13360/j.issn.2096-1359.2018.01.013.
ZUO Y F, LI W H, LI P, et al. Plasticization of bamboo fiber/polylactic acid degradable composite[J]. Journal of Forestry Engineering, 2018, 2018(1): 77-82.

相似文献/References:

[1]黎航,刘志鹏,杨政,等.有机蒙脱土协同壳聚糖基膨胀型阻燃剂阻燃聚乳酸研究[J].林业工程学报,2017,2(04):77.[doi:10.13360/j.issn.2096-1359.2017.04.013]
 LI Hang,LIU Zhipeng,YANG Zheng,et al.Synergistic effect of organic montmorillonite and chitosan-based intumescent flame retardant on flame retardant properties of polylactic acid[J].Journal of Forestry Engineering,2017,2(02):77.[doi:10.13360/j.issn.2096-1359.2017.04.013]

备注/Memo

备注/Memo:
收稿日期:2019-06-23 修回日期:2019-10-24
基金项目:浙江省公益技术应用研究计划项目(LGG18E060002); 浙江省竹资源与高效利用协同创新中心开放项目(2017ZZY2-15); 浙江省特色文创产品数字化设计与智能制造重点实验室开放项目(ZD201804)。
作者简介:白舒扬,男,研究方向为复合材料技术与生物制造领域。通信作者:倪忠进,男,副教授。E-mail:zafu_neezj@163.com
更新日期/Last Update: 2020-03-10