[1]孙丽惟,卞玉玲,周爱萍*,等.重组竹短期蠕变性能研究[J].林业工程学报,2020,5(02):69-75.[doi:10.13360/ j.issn.2096-1359.201905021]
 SUN Liwei,BIAN Yuling,ZHOU Aiping*,et al.Study on short-term creep property of bamboo scrimber[J].Journal of Forestry Engineering,2020,5(02):69-75.[doi:10.13360/ j.issn.2096-1359.201905021]





Study on short-term creep property of bamboo scrimber
1.南京林业大学生物质材料国家地方联合工程研究中心,南京 210037; 2.无锡商业职业技术学院,江苏 无锡 214153
SUN Liwei1 BIAN Yuling2 ZHOU Aiping1* ZHU Yan1
1. National-Provincial Joint Engineering Research Center of Biomaterials,Nanjing Forestry University, Nanjing 210037, China; 2. Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
重组竹 短期蠕变试验 应力水平 蠕变性能 Burgers模型
bamboo scrimber short-term creep test stress level creep performance Burgers model
10.13360/ j.issn.2096-1359.201905021
在重组竹房屋的正常使用过程中,构件会因荷载及温湿度共同作用而产生蠕变。因此,明确蠕变性能是重组竹结构设计体系不可忽视的重要问题之一。在25 ℃和相对湿度60%条件下,通过不同应力水平下重组竹顺纹单轴受拉、受压、三点受弯24 h短期蠕变试验,获得了蠕变应变-时间曲线及蠕变量-时间曲线,并以Burgers模型为基础,对试验结果进行了拟合。结果表明:当温湿度一定时,在较低应力水平下,蠕变只包含瞬态及稳态蠕变2个阶段,初始蠕变应变及蠕变应变总量与应力水平呈线性正相关关系,达到稳态阶段后重组竹几乎不再发生变形及破坏,具有良好的抵抗蠕变变形的能力。在较高应力水平下,重组竹蠕变不稳定性增强,抵抗蠕变性能有所降低,设计时应控制构件尺寸,确保其处于较低工作应力水平下,以利于其发挥自身抗蠕变性较高的优势。对比顺纹受拉、顺纹受压、三点受弯3种受力情况可知:顺纹受拉破坏呈脆性,无明显的破坏征兆; 顺纹受压、三点受弯均具有一定的破坏征兆。Burgers模型对于包含瞬态及稳态蠕变阶段的重组竹短期蠕变性能拟合程度较高,能够较好地反映其短期蠕变性能。
Bamboo scrimber is a high strength bamboo-based composite material, which was fabricated by gluing a large number of bamboo strand elements together with adhesive along the longitudinal axis of the element member. The original properties of bamboo are greatly optimized, and the utilization rate of raw materials is high. The bamboo scrimber has superior mechanical properties as well as flame retardancy, and its emission performance can be up to the environmental standard E1 according to the European emissions standards. With the development of its structural design system, it has been applied to the main body of building structure. Creep is the phenomenon that stress is constant and strain increases with the time duration. During the usual application of the bamboo scrimber house, the components will creep due to the combination of load and humiture. Defining creep performance is one of the important issues that cannot be ignored in the bamboo scrimber structure design system. Based on the Burgers model, the creep strain-time curve and its fitting results were obtained by the 24 h short-term creep tests of uniaxial tension, compression and three-point bending along the grain direction of the bamboo scrimber under 25 ℃ and 60% relative humidity, and at different stress levels. The analysis showed that, when the humiture remained unchanged, under the low stress level, the creep only contained two stages of transient and steady creep. The initial creep strain and the total creep strain were positively linearly correlated with the stress level, reaching the steady state. After this stage, the bamboo scrimber was almost no longer deformed or destroyed, and had good resistance to creep deformation. At high stress levels, the creep instability of bamboo scrimber was enhanced and the creep resistance was reduced. The design should control the size of members to ensure that it is at a low working stress level, so as to facilitate its self-creep resistance. It can be seen from the comparison of three kinds of stress conditions: uniaxial tension, compression and three-point bending along the grain direction of the bamboo scrimber. The damage of tension along the grain was brittle while the failure sign of three-point bending along the grain was not obvious; however, both the compression and three-point bending along the grain had certain failure signs. In addition, the Burgers model had a high fitting degree for short-term creep properties of bamboo scrimber containing transient and steady-state creep stages, and could better reflect its short-term creep performance.


[1] 左迎峰, 吴义强, 肖俊华, 等. 重组竹制备工艺对力学性能的影响[J]. 西南林业大学学报, 2016, 36(2): 132-136. DOI: 10.11929/j.issn.2095-1914.2016.02.022.
ZUO Y F, WU Y Q, XIAO J H, et al. Effect of preparation technology on mechanical properties of reconstituted bamboo[J]. Journal of Southwest Forestry University, 2016,36(2): 132-136.
[2] 于文吉. 我国重组竹产业发展现状与趋势分析[J]. 木材工业, 2012,26(1): 11-14. DOI:10.19455/j.mcgy.2012.01.005.
YU W J. Current status and future development of bamboo scrimber industry in China[J]. China Wood Industry, 2012, 26(1): 11-14.
[3] 秦莉, 于文吉. 重组竹研究现状与展望[J]. 世界林业研究, 2009, 22(6): 55-59.DOI: 10.13348/j.cnki.sjlyyj.2009.06.007.
QIN L, YU W J. Status and prospects of reconstituted bamboo lumber[J]. World Forestry Research, 2009, 22(6): 55-59.
[4] WANG X R, ZHOU A P, CHUI Y H. Load-carrying capacity of intermediately slender parallel strand bamboo columns with a rectangular cross section under biaxial eccentric compression[J]. BioResources, 2017, 13(1):313-330.DOI:10.15376/biores.13.1.313-330.
[5] HUANG D S, SHENG B L, SHEN Y R, et al. An analytical solution for double cantilever beam based on elastic-plastic bilinear cohesive law: analysis for mode I fracture of fibrous composites[J]. Engineering Fracture Mechanics, 2018, 193: 66-76. DOI:10.1016/j.engfracmech.2018.02.019.
[6] HUANG Z R, CHEN Z F, HUANG D S, et al. Cyclic loading behavior of an innovative semi-rigid connection for engineered bamboo-steel hybrid frames[J]. Journal of Building Engineering, 2019, 24: 100754. DOI:10.1016/j.jobe.2019.100754.
[7] DA C ANDRADE E N. On the viscous flow in metals, and allied phenomena[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1910, 84(567): 1-12. DOI:10.1098/rspa.1910.0050.
[8] FINDLEY W N, LAI J S, ONARAN K. Creep and relaxation of nonliner viscoelastic materials[M]. Mineola: Dover Publications, 1976.
[9] 虞华强, 赵荣军, 刘杏娥,等. 木材蠕变模拟研究概述[J]. 林业科学, 2007, 43(7): 101-105. DOI:10.3321/j.issn:1001-7488.2007.07.017.
YU H Q, ZHAO R J, LIU X E, et al. A review of models of creep in wood[J]. Scientia Silvae Sinicae, 2007, 43(7): 101-105.
[10] 岳孔, 张伟, 夏炎,等. 木质材料蠕变研究进展[J]. 木材加工机械, 2008, 19(3): 48-51. DOI:10.13594/j.cnki.mcjgjx.2008.03.011.
YUE K, ZHANG W, XIA Y,et al. A review on creep of wood material[J]. Wood Processing Machinery, 2008, 19(3): 48-51.
[11] 陈士英,龙玲,张宜生.竹材刨花板蠕变性能的研究[J].木材工业,1999,13(5):3-6. DOI:10.19455/j.mcgy.1999.05.001.
CHEN S Y, LONG L, ZHANG Y S. Study on creep performance of bamboo particleboard[J]. China Wood Industry, 1999, 13(5): 3-6.
[12] 喻云水, 杨宝. 竹胶合板模板蠕变特性研究[J]. 林业科技, 2008, 33(2): 47-50. DOI:10.3969/j.issn.1001-9499.2008.02.015.
YU Y S, YANG B. Study on creep performance of plybamboo form[J]. Forestry Science & Technology, 2008, 33(2): 47-50.
[13] 涂道伍, 邵卓平. 基于Burger体的竹材横纹热压流变模型[J]. 南京林业大学学报(自然科学版), 2008, 32(2): 67-70. DOI:10.3969/j.issn.1000-2006.2008.02.015.
TU D W, SHAO Z P. Rheology model of bamboo under transverse heat-compression based on Burger-body[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(2): 67-70.
[14] 涂道伍, 邵卓平, 徐斌, 等. 竹材横纹热压流变学性质的研究[J]. 竹子研究汇刊, 2007, 26(4): 45-49. DOI:10.3969/j.issn.1000-6567.2007.04.011.
TU D W, SHAO Z P, XU B, et al. A study on the rheological behavior of bamboo under transverse heat-compression[J]. Journal of Bamboo Research, 2007, 26(4): 45-49.
[15] 张晓敏, 孙正军, 王喜明, 等. 竹材径向压缩蠕变行为研究[J]. 林业机械与木工设备, 2010, 38(6): 26-29. DOI:10.3969/j.issn.2095-2953.2010.06.009.
ZHANG X M, SUN Z J, WANG X M, et al. Study on radical compression creep behavior of bamboo wood[J]. Forestry Machinery & Woodworking Equipment, 2010, 38(6): 26-29.
[16] 闫薇, 崔海星, 朱一辛, 等. 竹材的拉伸短期蠕变行为及模拟[J]. 林业科技开发, 2013, 27(3): 46-49. DOI:10.3969/j.issn.1000-8101.2013.03.012.
YAN W, CUI H X, ZHU Y X, et al. Analysis and simulation of Moso bamboo short-term tensile creep behaviour[J]. China Forestry Science and Technology, 2013, 27(3): 46-49.
[17] 闫薇, 朱一辛. 竹材蠕变应力指数的确定[J]. 林业科技开发, 2014, 28(3): 82-86. DOI:10.13360/j.issn.1000-8101.2014.03.021.
YAN W, ZHU Y X. Determination and analysis of bamboo creep stress exponent[J]. China Forestry Science and Technology, 2014, 28(3): 82-86.
[18] 李磊. 现代新型胶竹材料蠕变性能及组合结构蠕变研究[D]. 长沙: 湖南大学, 2012.
LI L. Research on creep property of glubam and modern bamboo composite structure[D]. Changsha: Hunan University, 2012.
[19] 李玉顺, 张秀华, 吴培增, 等. 重组竹在长期荷载作用下的蠕变行为[J]. 建筑材料学报, 2019, 22(1): 65-71. DOI: 10.3969/j.issn.1007-9629.2019.01.010.
LI Y S, ZHANG X H, WU P Z, et al. Creep behavior of bamboo scrimber under long-term load[J]. Journal of Building Materials, 2019, 22(1): 65-71.


 HUANG Sheng you,WU Zhi hui,LI Qin.Study on joint property of ovaltenon of reconstituted bamboo furniture[J].Journal of Forestry Engineering,2011,25(02):40.
[3]束必清 肖忠平 赵志高 等.重组竹框架结构的设计[J].林业工程学报,2014,28(05):82.
 SHU Biqing,XIAO Zhongping,ZHAO Zhigao,et al.Design on reconstituted bamboo frame structure[J].Journal of Forestry Engineering,2014,28(02):82.
 DU Chungui,WEI Jinguang,JIN Chunde.Fire retardant treatment process of bamboo scrimber[J].Journal of Forestry Engineering,2016,1(02):51.[doi:10.13360/j.issn.2096-1359.2016.01.010]
 ZHANG Sujun,LI Chen,XIAO Zhongping,et al.Bending strength and loading simulation analysis of bamboo scrimber I-shaped beam[J].Journal of Forestry Engineering,2017,2(02):125.[doi:10.13360/j.issn.2096-1359.2017.01.022]
 ZHANG Weigang,JIANG Wenzheng,TANG Rongqiang.Study on short-term bending creep behavior and microstructure of bamboo scrimber[J].Journal of Forestry Engineering,2017,2(02):33.[doi:10.13360/j.issn.2096-1359.2017.03.006]
 HE Wen,SONG Jiangang,WANG Tao,et al.Effect of heat oil treatment on bamboo scrimber properties[J].Journal of Forestry Engineering,2017,2(02):15.[doi:10.13360/j.issn.2096-1359.2017.05.003]
 ZHOU Junwen,HUANG Dongsheng*,SHEN Yurong.Experiments of partial compression bearing capacity perpendicular to grain of bamboo scrimber[J].Journal of Forestry Engineering,2018,3(02):123.[doi:10.13360/j.issn.2096-1359.2018.01.020]


收稿日期:2019-05-12 修回日期:2019-06-26
基金项目:国家自然科学基金(51778299); 江苏省研究生科研与创新计划项目(KYCX17_0832)。
作者简介:孙丽惟,女,研究方向为现代竹木结构。通信作者:周爱萍,女,教授。E-mail: zaping2007@163.com
更新日期/Last Update: 2020-03-10