[1]张辉,江健平,李静,等.二氧化钛/壳聚糖/丙烯酸复合水凝胶的原位交联及性能[J].林业工程学报,2020,5(02):76-81.[doi:10.13360/ j.issn.2096-1359.201901020]
 ZHANG Hui,JIANG Jianping,LI Jing,et al.Preparation and properties of TiO2/chitosan/acrylic acid in situ cross-linked composite hydrogel[J].Journal of Forestry Engineering,2020,5(02):76-81.[doi:10.13360/ j.issn.2096-1359.201901020]
点击复制

二氧化钛/壳聚糖/丙烯酸复合水凝胶的原位交联及性能()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
76-81
栏目:
生物质能源与材料
出版日期:
2020-03-11

文章信息/Info

Title:
Preparation and properties of TiO2/chitosan/acrylic acid in situ cross-linked composite hydrogel
文章编号:
2096-1359(2020)02-0076-06
作者:
张辉江健平李静李由周亮高慧刘盛全*
安徽农业大学林学与园林学院,合肥 230036
Author(s):
ZHANG Hui JIANG Jianping LI Jing LI You ZHOU Liang GAO Hui LIU Shengquan*
School of Forestry and Landscape Atchitecture, Anhui Agricultural University, Hefei 230036, China
关键词:
壳聚糖 丙烯酸 二氧化钛 复合水凝胶 光催化
Keywords:
chitosan acrylic acid titanium dioxide composite hydrogel photocatalytic
分类号:
TB332
DOI:
10.13360/ j.issn.2096-1359.201901020
文献标志码:
A
摘要:
壳聚糖基复合材料在水凝胶领域应用广泛,但其制备过程中通常需要有毒性的化学交联剂和经过繁琐的化学修饰等过程。将壳聚糖、丙烯酸和钛酸四丁酯共混,在遇水后,通过钛酸四丁酯的原位水解形成的纳米二氧化钛作为物理交联剂,一步法制备复合水凝胶,过程简单且无需化学交联剂。在此复合水凝胶中,纳米二氧化钛作为交联剂和光催化剂,丙烯酸可以提高壳聚糖的吸水性,同时丙烯酸和壳聚糖表面的羟基和氨基等基团又可以增强二氧化钛的光催化性能。利用X射线衍射、傅里叶红外光谱、扫描电镜和透射电镜等考察其形貌与结构等特征,并通过吸水试验和亚甲基蓝的光降解试验测试了其溶胀及光催化性能。结果表明:该复合水凝胶内部为多孔结构,粒径约为5~12 nm的二氧化钛均匀分散在复合水凝胶中,无团聚现象。该复合水凝胶材料具有优良的吸水性,其饱和吸水率约为1 500%,在模拟自然光下对亚甲基蓝有较好的光催化降解效果。以上结果表明该材料在污水处理领域具有一定的应用前景。
Abstract:
Large-scale production of chitosan-based composite hydrogels is limited because the preparation process is extremely complicated, which involved complex process of chemical modification, and the utilization of some noxious chemical crosslinking agents. In order to solve these problems, the authors fabricated in-situ physically cross-linked chitosan/acrylic acid/titanium dioxide composite hydrogel by one-step method. In this hydrogel, the acrylic acid can increase the water absorption capability of the composite hydrogel, and nano-size titanium dioxide was used as the crosslinking agent. This method can be much simpler and did not need any chemical cross-linking. At the same time, the titanium dioxide in this hydrogel can be also used as a photo catalyst, and the hydroxyl groups and amino groups of the acrylic and chitosan can enhance the photo catalytic performance of the titanium dioxide. The SEM images showed that the composite hydrogel had a 3D porous structure with the pore diameter ranging from 200-300 nm, which indicated that the composite hydrogel may have a good water loading performance. The TEM images showed that the titanium dioxide with a particle size of about 5-12 nm were well-dispersed in the composite hydrogel without agglomeration, indicating the good compatibility among the titanium dioxide, chitosan and acrylic acid in this composite hydrogel. The high degree of crystallinity of the titanium dioxide in hydrogel was anatase, which was measured by the X-ray diffraction method. The FT-IR analysis showed that no groups of materials were changed in the progress of hydrogel formed, which indicated that the composite hydrogel was indeed formed by the physical cross-linking. The composite hydrogel had excellent water absorption and a large saturated water absorption rate proportion of up to 1 500%, thus the hydrogel can be used as a water absorbing material. Furthermore, the composite hydrogel as catalysis was used to degrade simulation dye effluents such as methylene blue irradiate with natural light. The effect of photo catalytic degradation effect was determined by the decomposition of methylene blue correlated to the decay of the absorption at 660 nm with the UV-Vis spectrophotometer. The methylene blue was completely decomposed in 7 h, showing a high photo-catalytic activity of hydrogel in degrading reactive dyes. It may be reasoned that the charge transfer rate from the photo excited semiconductor to electron acceptors was accelerated and the photo catalytic substrates onto the titanium dioxide surface were concentrated. The above results indicated that the composite hydrogel in-situ formed without chemical cross-linking not only acted as a water absorbent, but also exhibited remarkable photo catalytic activity. This developed hydrogel has promissing application prospects in the fields of sewage treatment.

参考文献/References:

[1] 周帅, 苗庆显, 黄六莲, 等. 半纤维素基功能材料的研究进展[J]. 林产化学与工业, 2017, 37(6): 10-18. DOI:10.3969/j.issn.0253-2417.2017.06.002.
ZHOU S, MIAO Q X, HUANG L L, et al. Research progress in hemicellulose-based functional materials[J]. Chemistry and Industry of Forest Products, 2017, 37(6): 10-18.
[2] LI P, ZHAO J, CHEN Y, et al. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties[J]. Carbohydrate Polymers, 2017, 157: 1383-1392. DOI:10.1016/j.carbpol.2016.11.016.
[3] NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of cellulose nanofibrils: a review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25. DOI:10.1016/j.indcrop.2016.02.016.
[4] LIU B J, WANG D F, YU G L, et al. Adsorption of heavy metal ions, dyes and proteins bychitosan composites and derivatives: a review[J]. Journal of Ocean University of China, 2013, 12(3): 500-508. DOI:10.1007/s11802-013-2113-0.
[5] SHAJAHAN A, SHANKAR S, SATHIYASEELAN A, et al. Comparative studies of chitosan and its nanoparticles for the adsorption efficiency of various dyes[J]. International Journal of Biological Macromolecules, 2017, 104: 1449-1458. DOI:10.1016/j.ijbiomac.2017.05.128.
[6] HE M, HAN B Q, JIANG Z W, et al. Synthesis of achitosan-based photo-sensitive hydrogel and its biocompatibility and biodegradability[J]. Carbohydrate Polymers, 2017, 166: 228-235. DOI:10.1016/j.carbpol.2017.02.072.
[7] 徐德增, 李丹, 郭静, 等. 壳聚糖接枝丙烯酸吸水纤维的制备及性能[J]. 大连工业大学学报, 2009, 28(5): 351-353. DOI:10.19670/j.cnki.dlgydxxb.2009.05.010.
XU D Z, LI D, GUO J, et al. Preparation and properties of the chitosan graft acrylic acid absorbent fiber[J]. Journal of Dalian Polytechnic University, 2009, 28(5): 351-353.
[8] GUO M L, CHEN H N, LUO Z W, et al. Selective removal of Pb(Ⅱ)ions from aqueous solutions by acrylic acid/acrylamide comonomer grafted polypropylene fibers[J]. Fibers and Polymers, 2017, 18(8): 1459-1467. DOI:10.1007/s12221-017-7374-6.
[9] SUN Z F, LYU F, CAO L J, et al. Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers[J]. Angewandte Chemie International Edition, 2015, 54(27): 7944-7948. DOI:10.1002/anie.201502228.
[10] ABUDONIA K S, SAAD G R, NAGUIB H F, et al. Surface modification of polypropylene film by grafting with vinyl monomers for the attachment of chitosan[J]. Journal of Polymer Research, 2018, 25(5): 125. DOI:10.1007/s10965-018-1517-3.
[11] VIJAYAKUMAR V, KHASTGIR D. Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells[J]. Carbohydrate Polymers, 2018, 179: 152-163. DOI:10.1016/j.carbpol.2017.09.083.
[12] TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catalysis, 2016, 6(3): 1870-1879. DOI:10.1021/acscatal.5b02785.
[13] 孙秀慧. 改性纳米TiO2可见光催化性能分析[J]. 中国石油和化工标准与质量, 2017, 37(7): 81-82. DOI:10.3969/j.issn.1673-4076.2017.07.040.
SUN X H. Analysis of visible light catalytic performance of modified nano TiO2[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(7): 81-82.
[14] THEERAKARUNWONG C D, PHANICHPHANT S. Visible-light-induced photocatalytic degradation of PAH-contaminated soil and their pathways by Fe-doped TiO2 nanocatalyst[J]. Water, Air, & Soil Pollution, 2018, 229(9): 291. DOI:10.1007/s11270-018-3951-6.
[15] KUANG Y C, LIANG W L, JI X Y. Research and analysis on dispersing performance of nano-TiO2 powder in water[J]. Materials Science Forum, 2016, 852: 530-537. DOI:10.4028/www.scientific.net/msf.852.530.
[16] WILLNER I, EICHEN Y, WILLNER B. Supramolecular semiconductor receptor assemblies: improved electron transfer at TiO2-β-cyclodextrin colloid interfaces[J]. Research on Chemical Intermediates, 1994, 20(7): 681-700. DOI:10.1163/156856794x00487.
[17] WU W, SHAN G Q, XIANG Q, et al. Effects ofhumic acids with different polarities on the photocatalytic activity of nano-TiO2 at environment relevant concentration[J]. Water Research, 2017, 122: 78-85. DOI:10.1016/j.watres.2017.05.010.
[18] NASIR M, LEI J Y, IQBAL W, et al. Study of synergistic effect of Sc and C co-doping on the enhancement of visible light photo-catalytic activity of TiO2[J]. Applied Surface Science, 2016, 364: 446-454. DOI:10.1016/j.apsusc.2015.12.166.
[19] DING X Q, ZHANG C, DONG L M, et al. Synthesis of TiO2 nanoparticles using hydrogel as template and TiO2 microspheres using microfluidic[J]. Journal of Inorganic Materials, 2015, 30(6): 605. DOI:10.15541/jim20140590.
[20] MAHSHID S, ASKARI M, GHAMSARI M S. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution[J]. Journal of Materials Processing Technology, 2007, 189: 296-300. DOI:10.1016/j.jmatprotec.2007.01.040.
[21] 林华香, 王绪绪, 付贤智. TiO2表面羟基及其性质[J]. 化学进展, 2007, 19(5): 665-670.
LIN H X, WANG X X, FU X Z. Properties and distribution of the surface hydroxyl groups of TiO2[J]. Progress in Chemistry, 2007, 19(5): 665-670.
[22] WANG D, TAN Y, YU L N, et al. Tuning morphology and mechanical property of polyacrylamide/laponite/titania dual nanocomposite hydrogels by titania[J]. Polymer Composites, 2019, 40(S1): E466-E475. DOI:10.1002/pc.24754.
[23] 李谦, 祝迎春, 张治军, 等. 有机酸修饰水基sol-gel法制备TiO2纳米薄膜[J]. 华南理工大学学报(自然科学版), 2003, 31(4): 23-27. DOI:10.3321/j.issn: 1000-565X.2003.04.006.
LI Q, ZHU Y C, ZHANG Z J, et al. Preparation of TiO2 nano-films by water based Sol-gel method modified by organic acid[J]. Journal of South China University of Technology(Natural Science Edition), 2003, 31(4): 23-27.
[24] 孙晓锋, 李驰, 夏修阳, 等. 半纤维素/TiO2复合凝胶的光催化降解性能[J]. 化工学报, 2016, 5(5): 2070-2077. DOI:10.11949/j.issn.0438-1157.20151542.
SUN X F, LI C, XIA X Y, et al. Photocatalytic degradation property of hemicellulose/TiO2 composite gel[J]. CIESC Journal, 2016, 5(5): 2070-2077.

相似文献/References:

[1]喻胜飞,肖祎,汪艮艮,等.粉煤灰/壳聚糖复合材料的制备及在木材染色废水中的应用[J].林业工程学报,2016,1(06):29.[doi:10.13360/j.issn.2096-1359.2016.06.005]
 YU Shengfei,XIAO Yi,WANG Gengen,et al.Preparation of fly ash/chitosan composites and its application in the wastewater of wood dyeing[J].Journal of Forestry Engineering,2016,1(02):29.[doi:10.13360/j.issn.2096-1359.2016.06.005]
[2]杨秀树,吴华平,NAYEBARE Kakwara Prosper,等.交联壳聚糖/聚乙烯醇的制备及其在竹材中的构建[J].林业工程学报,2018,3(03):57.[doi:10.13360/j.Issn.2096-1359.2018.03.010]
 YANG Xiushu,WU Huaping,NAYEBARE Kakwara Prosper,et al.Preparation of crosslinked chitosan/poly(vinyl alcohol) and its construction in bamboo[J].Journal of Forestry Engineering,2018,3(02):57.[doi:10.13360/j.Issn.2096-1359.2018.03.010]
[3]俞娟,徐俊华,范一民*.壳聚糖抗菌性能研究进展[J].林业工程学报,2018,3(05):20.[doi:10.13360/j.issn.2096-1359.2018.05.003]
 YU Juan,XU Junhua,FAN Yimin*.A review of antibacterial properties of chitosan[J].Journal of Forestry Engineering,2018,3(02):20.[doi:10.13360/j.issn.2096-1359.2018.05.003]

备注/Memo

备注/Memo:
收稿日期:2019-01-30 修回日期:2019-12-13
基金项目:国家重点研发计划子课题(2017YFD0600201); 安徽省教育厅自然科学重点项目(KJ2019A0200); 国家级大学生创新创业训练项目(201910364020)。
作者简介:张辉,男,讲师,研究方向为生物质复合材料。通信作者:刘盛全,男,教授。E-mail:liusq@ahau.edu.cn
更新日期/Last Update: 2020-03-10