[1]童聪聪,陈宁,茹静,等.PFI磨浆对干湿竹浆制备阳离子纳纤化纤维素物化特性的影响[J].林业工程学报,2020,5(02):82-89.[doi:10.13360/ j.issn.2096-1359.201907036]
 TONG Congcong,CHEN Ning,RU Jing,et al.The influence of PFI pretreatment on physicochemical characteristics of cationic nanofibrillated cellulose prepared from once-dried and never-dried bamboo pulps[J].Journal of Forestry Engineering,2020,5(02):82-89.[doi:10.13360/ j.issn.2096-1359.201907036]
点击复制

PFI磨浆对干湿竹浆制备阳离子纳纤化纤维素物化特性的影响()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
82-89
栏目:
生物质能源与材料
出版日期:
2020-03-11

文章信息/Info

Title:
The influence of PFI pretreatment on physicochemical characteristics of cationic nanofibrillated cellulose prepared from once-dried and never-dried bamboo pulps
文章编号:
2096-1359(2020)02-0082-08
作者:
童聪聪陈宁茹静单鹏嘉刘宏治*杜春贵
浙江农林大学工程学院,浙江省竹资源与高效利用协同创新中心,杭州 311300
Author(s):
TONG Congcong CHEN Ning RU Jing SHAN Pengjia LIU Hongzhi* DU Chungui
College of Engineering,Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization,Zhejiang A&F University, Hangzhou 311300, China
关键词:
纳纤化纤维素 竹浆状态 PFI预处理 物化特性 微观结构
Keywords:
nanofibrillated cellulose bamboo pulp state PFI pretreatment physicochemical characteristics microstructure
分类号:
O636.1
DOI:
10.13360/ j.issn.2096-1359.201907036
文献标志码:
A
摘要:
研究了PFI磨浆预处理对干、湿竹浆所制备的阳离子纳纤化纤维素(Q-NFC)物化特性和微观结构的影响规律。选用PFI磨浆处理前后的干、湿竹浆为纤维素原料,依次经过2,3-环氧丙基三甲基氯化铵化学预处理和高压均质机械拆解分离,制备了一系列Q-NFC水分散液; 采用电导滴定、紫外-可见光分光光度计(UV-Vis)、旋转流变仪、透射电子显微镜(TEM)及X射线衍射仪(XRD)等手段对系列Q-NFC水分散液进行分析表征。试验结果表明,由湿竹浆所制备的Q-NFC较干竹浆所制备的Q-NFC具有更高的固体收率、表面电荷量、Zeta电位、纳纤化程度及更细的平均微纤直径; 经PFI磨浆预处理后,干、湿竹浆纤维表面均发生大量分丝帚化现象,导致纤维在季铵盐化预处理过程中的反应可及性和反应活性增加,从而进一步提高了干、湿竹浆所制得Q-NFC固体收率、表面电荷量、纳纤化程度及透光度等物化特性,但减少了它们的微纤尺寸和聚合度。由此可以说明,PFI磨浆预处理能消除角质化给干竹浆在季铵盐化预处理中带来的不利影响,但是对Q-NFC的结晶指数无明显影响。
Abstract:
In this work, the effects of the PFI pretreatment on physicochemical characteristics and microstructure of as-prepared quaternizednanofibrillated celluloses(Q-NFC)derived from once-dried and never-dried pulps were investigated. With the once-dried and never-dried bamboo pulps pretreated before and after PFI as raw materials, a series of Q-NFCs were prepared, respectively, through the chemical pre-treatment using 2,3-epoxypropyltrimethylammonium chloride(EPTAC)and subsequent mechanical disintegration via a high-pressure homogenizer. The as-obtained Q-NFCs were characterized by the solid recovery ratio determination, conductometric titration, Zeta potentiometer, degree of polymerization and yield of fibrillation measurement, ultraviolet-visible light spectrophotometer(UV-Vis), rotation rheometer, transmission electron microscope(TEM)and X-ray diffractometer(XRD), respectively. The results showed that, compared to Q-NFC prepared from the once-dried bamboo pulp, the higher solid recovery ratio, surface charge content, Zeta potential, degree of fibrillation as well as finer average cellulose microfibril diameter were achieved for the Q-NFC from the never-dried bamboo pulp. It was clear that the role of hornificationoccurred in the once-dried pulps caused the decrease of the swelling capacity(i.e. water retention value)of fibers and closure of pores. As a consequence, the accessibility of EPTAC and reactivity of cellulose fibers were decreased. However, after the beating pre-treatment via a PFI mill, a high degree of fibrillation occurred on the surfaces of both once-dried and never-dried pulp fibers, which promoted the accessibility to the cationic reagents and reactivity of cellulose fibers in the quaternized pre-treatment process.As a result, it was found that the physicochemical characteristics(such as solid recovery, surface charge content, Zeta potential, degree of fibrillation and light transmittance)of the bamboo pulp-derived Q-NFCs were markedly improved with a decrease in both average microfibril diameter and DPv value. The results demonstrated that the adverse effect of hornification on the subsequent quaternized pre-treatment of the once-dried bamboo pulp was eliminated. But both wetting sates of bamboo pulp and PFI pretreatment had slight effects on CrI values of the resulting Q-NFCs. This fundamental knowledge would be crucial to understand how the hornification of cellulose pulps affects the physicochemical characteristics and microstructure of as-obtained Q-NFCs and would be favorable to optimize the preparation conditions of Q-NFC.

参考文献/References:

[1] 吴清林, 梅长彤, 韩景泉, 等. 纳米纤维素制备技术及产业化现状[J]. 林业工程学报, 2018, 3(1): 1-9. DOI: 10.13360/j.issn.2096-1359.2018.01.001.
WU Q L, MEI C T, HAN J Q, et al. Preparation technology and industrialization status of nano cellulose[J]. Journal of Forestry Engineering, 2018,3(1): 1-9.
[2] LIU H, GENG B, CHEN Y, et al. Review on the aerogel-type oil sorbents derived from nanocellulose[J]. ACS Sustainable Chemistry and Engineering, 2016, 5(1): 49-66. DOI: 10.1021/acssuschemeng.6b02301.
[3] 杨全岭, 杨俊伟, 石竹群, 等. 纳米纤维素基导电材料及其在电子器件领域的研究进展[J]. 林业工程学报, 2018, 3(3): 9-19. DOI: 10.13360/j.issn.2096-1359.2018.03.001.
YANG Q L, YANG J W, SHI Z Q, et al.Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices[J]. Journal of Forestry Engineering, 2018, 3(3): 9-19.
[4] VILARINHO F, SANCHES SILVA A, VAZ M F, et al. Nanocellulose in green food packaging[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(9): 1526-1537. DOI: 10.1080/10408398.2016.1270254.
[5] 蒋仙友, 张雅娟, 汪济奎, 等. 纳米纤维素晶须与聚烯烃弹性体协同增韧增强聚丙烯三元复合材料性能研究[J]. 林业工程学报, 2018, 3(1): 89-96. DOI: 10.13360/j.issn.2096-1359.2018.01.015.
JING X Y, ZHANG Y J, WANG J Q, et al. Significant reinforcement of polypropylene by synergistic compatibilization of nano-cellulose whiskers and POE[J]. Journal of Forestry Engineering, 2018, 3(1): 89-96.
[6] NECHYPORCHUK O, BELGACEM M N, BRAS J. Production of cellulose nanofibrils: a review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25. DOI: 10.1016/j.indcrop.2016.02.016.
[7] WANG Q Q, ZHU J Y, GLEISNER R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose, 2012, 19(5): 1631-1643. DOI: 10.1007/s10570-012-9745-x.
[8] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85. DOI:10.1039/c0nr00583e.
[9] EYHOLZER C, BORDEANU N, LOPEZ-SUEVOS F, et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form[J]. Cellulose, 2010, 17(1): 19-30. DOI: 10.1007/s10570-009-9372-3.
[10] TEJADO A, ALAM M N, ANTAL M, et al. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers
[J]. Cellulose, 2012, 19(3): 831-842. DOI: 10.1007/s10570-
012-9694-4.
[11] PEI A, BUTCHOSA N, BERGLUND L A, et al. Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes[J]. Soft Matter, 2013, 9(6): 2047-2055. DOI: 10.1039/c2sm27344f.
[12] SHINODA R, SAITO T, OKITA Y, et al. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils[J]. Biomacromolecules, 2012, 13(3): 842-849. DOI: 10.1021/bm2017542.
[13] FUKUZUMI H, SAITO T, OKITA Y, et al. Thermal stabilization of TEMPO-oxidized cellulose[J]. Polymer Degradation and Stability, 2010, 95(9): 1502-1508. DOI: 10.1016/j.polymdegradstab.2010.06.015.
[14] LIIMATAINEN H, SUOPAJRVI T, SIRVI J, et al. Fabrication of cationic cellulosic nanofibrils through aqueous quaternization pretreatment and their use in colloid aggregation[J]. Carbohydrate Polymers, 2014, 103(1): 187-192. DOI: 10.1016/j.carbpol.2013.12.042.
[15] SAINI S, YÜCEL FALCO Ç, BELGACEM M N, et al. Surface cationized cellulose nanofibrils for the production of contact active antimicrobial surfaces[J]. Carbohydrate Polymers, 2016, 135: 239-247. DOI:10.1016/j.carbpol.2015.09.002.
[16] 王宝玉, 李荣, 李军荣, 等. 化学浆纤维角质化的研究进展[J]. 纸和造纸, 2013, 32(3): 32-35. DOI: 10.13472/j.ppm.2013.03.030.
WANG B Y, LI R, LI J R, et al. Progress in the research of fiber honification of chemical pulp[J]. Paper and Paper Making, 2013, 32(3): 32-35.
[17] 徐媚, 徐梦蝶, 戴红旗, 等. 球磨和PFI磨预处理对纸浆纤维结构及形态的影响[J]. 纤维素科学与技术, 2013, 21(2): 46-52. DOI: 10.3969/j.issn.1004-8405.2013.02.007.
XU M, XU M D, DAI H Q, et al.The effects of ball milling and PFI pretreatment on the cellulose structure and fiber morphology[J]. Journal of Cellulose Science and Technology, 2013, 21(2): 46-52.
[18] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules, 2007, 8(8): 2485-2491. DOI: 10.1021/bm0703970.
[19] SEGAL L, CREELY J J, MARTIN A E Jr, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. DOI: 10.1177/004051755902901003.
[20] 野口裕一, 野一色泰友, 本间郁绘. 磷酸酯化微细纤维素纤维及其制造方法: CN107805851A[P]. 2018-03-16.
NOGUCHI Y, NOICHI Y, HONMA R. Phosphoric acid esterification of microcellulose fiber and its manufacturing method: CN107805851A[P]. 2018-03-16.
[21] IYER S R S, JAYARAM R. Zeta-potential studies in cellulose fibre-aqueous electrolyte solution systems[J]. Journal of the Society of Dyers and Colourists, 2008, 87(10): 338-342. DOI:10.1111/j.1478-4408.1971.tb02973.x.
[22] WU B, GENG B, CHEN Y, et al. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films[J]. Frontiers of Chemical Science and Engineering, 2017, 11(4): 554-563. DOI: 10.1007/s11705-017-1673-8.
[23] SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules, 2006, 7(6): 1687-1691. DOI: 10.1021/bm060154s.
[24] JIANG F, HSIEH Y L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing[J]. Journal of Materials Chemistry A, 2014, 2(2): 350-359. DOI: 10.1039/C3TA13629A.

备注/Memo

备注/Memo:
收稿日期:2019-07-20 修回日期:2019-09-29
基金项目:浙江省级公益技术应用研究项目(2016C33029); 中国科学院工程塑料重点实验室开放课题(化学研究所); 浙江农林大学科研发展基金(2013FR088)。
作者简介:童聪聪,男,研究方向为纳米纤维素基功能材料。通信作者:刘宏治,男,教授。E-mail: hzliu@iccas.ac.cn
更新日期/Last Update: 2020-03-10