[1]崔晓晓,何林韩,安珍,等.沙柳多元醇液化产物流变性能的研究[J].林业工程学报,2020,5(02):90-96.[doi:10.13360/ j.issn.2096-1359.201907013]
 CUI Xiaoxiao,HE Linhan,AN Zhen,et al.The research of rheological properties of salix polyol liquefied products[J].Journal of Forestry Engineering,2020,5(02):90-96.[doi:10.13360/ j.issn.2096-1359.201907013]
点击复制

沙柳多元醇液化产物流变性能的研究()
分享到:

《林业工程学报》[ISSN:1001-8081/CN:32-1160/S]

卷:
5
期数:
2020年02期
页码:
90-96
栏目:
生物质能源与材料
出版日期:
2020-03-11

文章信息/Info

Title:
The research of rheological properties of salix polyol liquefied products
文章编号:
2096-1359(2020)02-0090-07
作者:
崔晓晓1何林韩2安珍1张明辉1韩望1*
1.内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018; 2.北京林业大学材料科学与技术学院,北京 100083
Author(s):
CUI Xiaoxiao1 HE Linhan2 AN Zhen1 ZHANG Minghui1 HAN Wang1*
1. College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; 2. College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
关键词:
沙柳 多元醇液化 木材液化 流变性能 假塑性流体
Keywords:
Salix psammophila polyol liquefaction wood liquefation rheological properties pseudoplastic fluid
分类号:
TQ325; TB33
DOI:
10.13360/ j.issn.2096-1359.201907013
文献标志码:
A
摘要:
沙柳木粉在液化剂和催化剂的作用下制成的液化产物可生产制作聚氨酯、环氧树脂、胶黏剂等。研究沙柳液化产物的流变性能,可探索宏观流变性质与液体微观内部反应机理之间的关系,优化设备结构和加工工艺条件,对其高效利用有着重大意义。本试验将沙柳木粉在浓硫酸催化条件下进行多元醇液化,通过改变液化处理条件(反应时间、反应温度和催化剂用量)制备具有不同流变性能的沙柳液化产物。利用旋转型流变仪对所制备的沙柳液化产物进行流变性能测试和分析。沙柳木粉液化条件的单因素试验和正交试验分析结果表明:影响沙柳液化产物黏度的主要因素是反应时间,其次是反应温度和催化剂用量,最佳工艺条件为反应时间70 min、反应温度170 ℃、催化剂用量5%。在最佳工艺条件下,剪切速率为78.87 s-1时,黏度为0.26 Pa·s。红外光谱(FT-IR)分析得出,液化物中纤维素被大量降解,半纤维素和木质素部分降解,羟基增加,生成更多的反应活性官能团,此条件下液化反应更加充分,流体黏度较大。流变性能测试结果显示:稳态扫描测试时,黏度随剪切速率的增加逐渐减小,表现出剪切变稀的现象; 剪切应力随着剪切速率的增加逐渐升高,表现出假塑性流体的性质。通过动态频率扫描曲线变化规律分析,储能模量和损耗模量随着角频率的升高而逐渐增加,复数黏度却随之减小。
Abstract:
A liquefied product was fabricated by adding liquefaction agent and catalyst to salix powder. Salix liquefaction products can be converted into polyurethane, epoxy resin, adhesives, etc. The study of the rheological properties of salix liquefied products can explore the relationship between the macroscopic rheological properties and the liquid microscopic reaction mechanism, optimize the equipment structure and processing conditions, and play a significant role in the subsequent efficient use. In this test, the salix powder and the polyhydric alcohol were mixed, and the catalyst was added with concentrated sulfuric acid to prepare the salix liquefied product. In the salix liquefaction test, the degree of liquefaction was mainly affected by three factors, which were the reaction time, the reaction temperature, and the amount of catalyst. In the experiment, these three factors were used as variables, and the value of the variables was controlled within a certain range by a single factor method. At the same time, the main values that affect the degree of response were within this range. Because of the change of reaction conditions, the liquefied products prepared by this method had different rheological properties. The rheology test and analysis of the liquefied products of salix were carried out by a rotary rheometer. The single factor and orthogonal experiments were carried out on the liquefaction process of salix. The reaction time was the major factor affecting the liquefaction of salix, followed by the reaction temperature and the amount of catalyst. The optimum process conditions were the reaction time of 70 min, the reaction temperature of 170 ℃ and the catalyst dosage of 5%. Under the optimum process conditions, the viscosity was about 0.26 Pa·s when the shear rate was about 78.87 s-1. The FT-IR analysis showed that the cellulose in the liquefied material was degraded in a large amount, the hemicellulose and lignin were partially degraded, and the hydroxyl group was increased to generate more reactive functional groups. Under this condition, the liquefaction reaction was more sufficient, and the fluid viscosity was larger. The shear stress increased with the increase of shear rate, showing the properties of pseudoplastic fluid. Through the analysis of the variation law of the dynamic frequency sweep curve, the storage modulus and the loss modulus increased with the increase of the angular frequency, and the complex viscosity decreased.

参考文献/References:

[1] CASTELLO D, HAIDER M S, ROSENDAHL L A. Catalytic upgrading of hydrothermal liquefaction biocrudes: different challenges for different feedstocks[J]. Renewable Energy, 2019, 2:420-430. DOI:10.1016/j.renene.2019.04.003.
[2] ABELHA P, VILELA C M, NANOU P, et al. Combustion improvements of upgraded biomass by washing and torrefaction[J]. Fuel, 2019, 253:1018-1033. DOI:10.1016/j.fuel.2019.05.050.
[3] HAMAYOUN M, NAVEED R, AHMAD S. Kinetic modeling and optimization of parameters for biomass pyrolysis: a comparison of different lignocellulosic biomass[J]. Energy Sources Parta-Recovery Utilization and Environmental Effcts, 2019, 41(14):1690-1700. DOI:10.1080/15567036.2018.1549144.
[4] GOSZ K, KOSMELA P, HEJNA A, et al. Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties[J]. Wood Science and Technology, 2018, 52(3):599-617. DOI:10.1007/s00226-018-0991-4.
[5] HERRAN R, AMALVY J I, CHIACCHIARELLII L M. Highly functional lactic acid ring-opened soybean polyols applied to rigid polyurethane foams[J]. Journal of Applied Polymer Science,2019, 136(37):1-13. DOI: 10.1002/APP.47959.
[6] ZHANG Y, LIU Z, HUI L F. Study on the polyhydric alcohol liquefaction of corn stalk under atmospheric pressure and analysis of liquefied products[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1517-1523. DOI:10.3964/j.issn.1000-0593(2019)05-1517-07.
[7] MITANI T. Recent progress on microwave processing of biomass for bioenergy production[J]. Journal of the Japan Petroleum Institute, 2018, 61(2):113-120. DOI:10.1627/jpi.61.113.
[8] LEE E J,HA K,LIM K H. Bio-polyurethane polymerized with polyol obtained from liquefaction of a biomass and isocyanate, and its optimization[J]. Polymer Science, 2019, 43(6)899-913. DOI:10.7317/pk.2019.43.6.899.
[9] WANG S, HU Z R, SHI J, et al. Green synthesis of graphene with the assistance of modified lignin and its application in anticorrosive waterborne epoxy coatings[J]. Applied Surface Science, 2019, 484: 759-770. DOI:10.1016/j.apsusc.2019.03.229.
[10] DOS SANTOS R G, CARVALHO R, SILVA E R, et al. Natural polymeric water-based adhesive from cork liquefaction[J]. Industrial Crops and Products, 2016(84): 314-319. DOI:10.1016/j.indcrop.2016.02.020.
[11] VILLANI V, PUCCIARIELLO R, LAVALLATA V. Rheology of modified wood by means of pure solvent or solution treatments[J]. Journal of Polymers and the Environment, 2018, 26(3): 1253-1261. DOI:10.1007/s10924-017-1035-0.
[12] SONG Y M, WANG Y Y, LI H, et al. Role of wood fibers in tuning dynamic rheology, non-isothermal crystallization, and microcellular structure of polypropylene foams[J]. Materials(Basel, Switzerland), 2018, 12(1): 1-14. DOI:10.3390/ma12010106.
[13] LIU Y Q, CHEN J J, SONG J, et al. Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion[J]. Bioresource Technology, 2018, 272: 360-369. DOI:10.1016/j.biortech.2018.10.050.
[14] YAN Y B, HU M M, WANG Z H. Kinetic study on the liquefaction of cornstalk in polyhydric alcohols[J]. Industrial Crops and Products, 2010, 32(3): 349-352. DOI:10.1016/j.indcrop.2010.05.015.
[15] 周宇, 安珍. 沙柳多元醇液化的动力学研究[J]. 内蒙古农业大学学报(自然科学版), 2015, 36(4): 124-127. DOI:10.16853/j.cnki.1009-3575.2015.04.023.
ZHOU Y, AN Z. Study on the kinetics of liquefaction of Salix wood[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2015, 36(4): 124-127.
[16] 周宇. 沙柳材液化及液化产物制备聚氨酯泡沫材料的研究[D]. 呼和浩特:内蒙古农业大学, 2016.
ZHOU Y.Liquefaction of Salix and preparation of rigid polyurethane foams by the liquefaction products[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
[17] 张晨霞, 沈源, 黄金田. 沙柳、柠条和杨木液化产物合成树脂的胶合性能[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(3): 136-140. DOI:10.16853/j.cnki.1009-3575.2014.03.026.
ZHANG C X, SHEN Y, HUANG J T. Bonding properties of synthetic resin prepared by liquefied salix, caragana and poplar[J]. Journal of Inner Mongolia Agricultural University(Natural Science Edition), 2014, 35(3): 136-140.
[18] SCHWANNINGER M, RODRIGUES J C, PEREIRA H, et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J]. Vibrational Spectroscopy, 2004, 36(1): 23-40. DOI:10.1016/j.vibspec.2004.02.003.
[19] VAZQUEZ G, ANTORRENA G, GONZALEZ J, et al. FTIR, H-1 and C-13 NMR characterization of acetosolv-solubilized pine and eucalyptus lignins[J]. Holzforschung, 1997, 51(2): 158-166. DOI:10.1515/hfsg.1997.51.2.158.
[20] JI W C, SHEN Z M, Wen Y J. A continuous hydrothermal saccharifification approach of rape straw using dilute sulfuric acid[J]. Bioenergy Research, 2014, 7(4): 1392-1401. DOI:10.1007/s12155-014-9468-y.
[21] 朱显超. 五种生物质微波辅助液化工艺及特性研究[D]. 北京: 中国林业科学研究院, 2013.
ZHU X C.Study on microwave-assisted liquefaction process and properties of five biomass feedstocks[D]. Beijing: Chinese Academy of Forestry, 2013.
[22] YE L, ZHANG J, ZHAO J, et al. Liquefaction of bamboo shoot shell for the production of polyols[J]. Bioresource Technology, 2014, 153: 147-153. DOI:10.1016/j.biortech.2013.11.070.
[23] 林凌, 罗平亚, 鲍晋, 等. 聚苯乙烯微球对疏水缔合聚合物溶液流变性能的影响[J]. 油田化学, 2019, 36(1): 134-138. DOI:10.19346/j.cnki.1000-4092.2019.01.025.
LIN L, LUO P Y, BAO J, et al. Effect of polystyrene microsphere on the rheology of hydrophobic associating polymer solution[J]. Oilfield Chemistry, 2019, 36(1): 134-138.
[24] 康凯, 李小刚, 何亚东, 等. 聚丙烯/复合发泡剂的在线流变行为研究[J]. 塑料工业, 2019, 47(2): 122-125. DOI:10.3969/j.issn.1005-5770.2019.02.025.
KANG K, LI X G, HE Y D, et al. On-line rheological behavior of polypropylene and composite blowing agent[J]. China Plastics Industry, 2019, 47(2): 122-125.

相似文献/References:

[1]马文龙,韩望,安珍,等.沙柳试验削片机切削机构的设计[J].林业工程学报,2016,1(04):124.[doi:10.13360/j.issn.2096-1359.2016.04.021]
 MA Wenlong,HAN Wang,AN Zhen,et al.Design on the cutting mechanism of experimental sandy-shrub chipper[J].Journal of Forestry Engineering,2016,1(02):124.[doi:10.13360/j.issn.2096-1359.2016.04.021]
[2]李震,高雨航,刘彭.沙柳细枝颗粒致密成型过程中的压缩方式[J].林业工程学报,2018,3(04):102.[doi:10.13360/j.issn.2096-1359.2018.04.017]
 LI Zhen,GAO Yuhang,LIU Peng.Compression method in dense molding process of salix twigs granule[J].Journal of Forestry Engineering,2018,3(02):102.[doi:10.13360/j.issn.2096-1359.2018.04.017]

备注/Memo

备注/Memo:
收稿日期:2019-07-13 修回日期:2019-11-12
基金项目:国家自然科学基金(31360160); 内蒙古自治区自然科学基金(2017BS0306); 内蒙古农业大学博士后科研基金。
作者简介:崔晓晓,女,研究方向为木基复合材料。通信作者:韩望,男,博士,讲师。E-mail:hanwang328@163.com
更新日期/Last Update: 2020-03-10